Genome-Wide Identification and Comprehensive Analysis of the PPO Gene Family in Glycine max and Glycine soja

文献类型: 外文期刊

第一作者: Song, Ziye

作者: Song, Ziye;Dong, Yingshan;Song, Ziye;Wang, Bo;Liu, Jia;Liu, Nianxi;Yi, Zhigang;Li, Zhi;Dong, Zhimin;Zhang, Chunbao;Dong, Yingshan;Li, Yuqiu

作者机构:

关键词: Glycine max; Glycine soja; PPO; gene family

期刊名称:GENES ( 影响因子:2.8; 五年影响因子:3.2 )

ISSN:

年卷期: 2025 年 16 卷 1 期

页码:

收录情况: SCI

摘要: Background: Polyphenol oxidases (PPOs) form a multigene family that is widely distributed in plants, animals, and insects. To date, PPOs have been identified in plants such as Populus L. and Solanum tuberosum L., but studies on PPOs in soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.) remain limited. Methods: To clarify the nature, structure, evolution, expression pattern, and interaction network of PPOs in these plants, we performed bioinformatics analysis and evaluated the expression patterns of PPOs in soybean and wild soybean throughout the growth period and under salt stress. Results: We identified 17 and 15 genes belonging to the PPO family. These genes were distributed across chromosomes 7 and 6 and could be divided into three groups. Most of these genes only contained one coding sequence (CDS), and their gene structure, conserved motifs, and 3D structures were very similar. Although there were a few intraspecies gene duplications, 75 gene replication pairs between soybean and wild soybean were detected. A Ka/Ks analysis showed that the PPOs in these plants were mainly subjected to purity selection. Moreover, the expression of the PPO genes varied greatly during different stages of the growth period and under salt stress, showing high temporal and spatial specificity. The protein interaction networks of these genes appeared to be quite distinct. Through the interaction analysis of the candidate gene GmPPO2 selected under salt stress, Glyma.07G059000, Glyma.10G279000, and Glyma.03G167900 were identified as the candidate genes regulating salt stress tolerance in soybean. Conclusions: These findings provide a foundation for further research on the evolution of soybean and wild soybean, as well as the functions of the PPO gene family.

分类号:

  • 相关文献
作者其他论文 更多>>