Berberine alleviates ETEC-induced intestinal inflammation and oxidative stress damage by optimizing intestinal microbial composition in a weaned piglet model

文献类型: 外文期刊

第一作者: Wang, Yue

作者: Wang, Yue;Zhang, Ziting;Du, Min;Liu, Xiaodan;Zhao, Chunfang;Pang, Xunsheng;Jin, Erhui;Wen, Aiyou;Li, Shenghe;Zhang, Feng;Ji, Xu;Zhao, Chunfang;Jin, Erhui;Li, Shenghe;Zhang, Feng

作者机构:

关键词: enterotoxigenic Escherichia coli; berberine; weaned piglet; intestinal inflammation; oxidative damage

期刊名称:FRONTIERS IN IMMUNOLOGY ( 影响因子:5.9; 五年影响因子:6.8 )

ISSN: 1664-3224

年卷期: 2024 年 15 卷

页码:

收录情况: SCI

摘要: Introduction: Enterotoxigenic Escherichia coli (ETEC) is the main diarrhea-causing pathogen in children and young animals and has become a global health concern. Berberine is a type of "medicine and food homology" and has a long history of use in China, particularly in treating gastrointestinal disorders and bacterial diarrhea. Methods: In this study, we explored the effects of berberine on growth performance, intestinal inflammation, oxidative damage, and intestinal microbiota in a weaned piglet model of ETEC infection. Twenty-four piglets were randomly divided into four groups-a control group (fed a basal diet [BD] and infused with saline), a BD+ETEC group (fed a basal diet and infused with ETEC), a LB+ETEC group (fed a basal diet with 0.05% berberine and infused with ETEC infection), and a HB+ETEC group (fed a basal diet with 0.1% berberine and infused with ETEC). Results: Berberine significantly improved the final body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI) (P<0.05) of piglets, and effectively decreased the incidence of diarrhea among the animals (P<0.05). Additionally, berberine significantly downregulated the expression levels of the genes encoding TNF-alpha, IL-1 beta, IL-6, IL-8, TLR4, MyD88, NF-kappa B, IKK alpha, and IKK beta in the small intestine of piglets (P<0.05). ETEC infection significantly upregulated the expression of genes coding for Nrf2, CAT, SOD1, GPX1, GST, NQO1, HO-1, GCLC, and GCLM in the small intestine of the animals (P<0.05). Berberine significantly upregulated 12 functional COG categories and 7 KEGG signaling pathways. A correlation analysis showed that berberine significantly increased the relative abundance of beneficial bacteria (Gemmiger, Pediococcus, Levilactobacillus, Clostridium, Lactiplantibacillus, Weissella, Enterococcus, Blautia, and Butyricicoccus) and decreased that of pathogenic bacteria (Prevotella, Streptococcus, Parabacteroides, Flavonifractor, Alloprevotella) known to be closely related to intestinal inflammation and oxidative stress in piglets. In conclusion, ETEC infection disrupted the intestinal microbiota in weaned piglets, upregulating the TLR4/MyD88/NF-kappa B and Nrf2 signaling pathways, and consequently leading to intestinal inflammation and oxidative stress-induced damage. Discussion Our data indicated that berberine can optimize intestinal microbiota balance and modulate the TLR4/MyD88/NF-kappa B and Nrf2 signaling pathways, thus helping to alleviate intestinal inflammation and oxidative damage caused by ETEC infection in weaned piglets.

分类号:

  • 相关文献
作者其他论文 更多>>