Fus3 Interacts with Gal83, Revealing the MAPK Crosstalk to Snf1/AMPK to Regulate Secondary Metabolic Substrates in Aspergillus flavus

文献类型: 外文期刊

第一作者: Ma, Longxue

作者: Ma, Longxue;Ma, Junning;Tian, Yuanyuan;Li, Xu;Tai, Bowen;Xing, Fuguo

作者机构:

关键词: aflatoxin; Fus3-MAPK; Snf1/AMPK; Gal83; crosstalk

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:6.1; 五年影响因子:6.3 )

ISSN: 0021-8561

年卷期: 2024 年 72 卷 17 期

页码:

收录情况: SCI

摘要: Aflatoxins (AFs), highly carcinogenic natural products, are produced by the secondary metabolism of fungi such as Aspergillus flavus. Essential for the fungi to respond to environmental changes and aflatoxin synthesis, the pheromone mitogen-activated protein kinase (MAPK) is a potential regulator of aflatoxin biosynthesis. However, the mechanism by which pheromone MAPK regulates aflatoxin biosynthesis is not clear. Here, we showed Gal83, a new target of Fus3, and identified the pheromone Fus3-MAPK signaling pathway as a regulator of the Snf1/AMPK energy-sensing pathway modulating aflatoxins synthesis substrates. The screening for Fus3 target proteins identified the beta subunit of Snf1/AMPK complexes using tandem affinity purification and multiomics. This subunit physically interacted with Fus3 both in vivo and in vitro and received phosphorylation from Fus3. Although the transcript levels of aflatoxin synthesis genes were not noticeably downregulated in both gal83 and fus3 deletion mutant strains, the levels of aflatoxin B1 and its synthesis substrates and gene expression levels of primary metabolizing enzymes were significantly reduced. This suggests that both the Fus3-MAPK and Snf1/AMPK pathways respond to energy signals. In conclusion, all the evidence unlocks a novel pathway of Fus3-MAPK to regulate AFs synthesis substrates by cross-talking with the Snf1/AMPK complexes.

分类号:

  • 相关文献
作者其他论文 更多>>