TrG2P: A transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield
文献类型: 外文期刊
第一作者: Li, Jinlong
作者: Li, Jinlong;Zhang, Dongfeng;Yang, Feng;Zhang, Qiusi;Pan, Shouhui;Zhao, Xiangyu;Zhang, Qi;Han, Yanyun;Wang, Kaiyi;Zhao, Chunjiang;Li, Jinlong;Zhang, Dongfeng;Yang, Feng;Zhang, Qiusi;Pan, Shouhui;Zhao, Xiangyu;Zhang, Qi;Han, Yanyun;Wang, Kaiyi;Zhao, Chunjiang;Yang, Jinliang;Yang, Jinliang
作者机构:
关键词: crop; genotype to phenotype; transfer learning; yield prediction; multi-trait
期刊名称:PLANT COMMUNICATIONS ( 影响因子:9.4; 五年影响因子:9.4 )
ISSN: 2590-3462
年卷期: 2024 年 5 卷 7 期
页码:
收录情况: SCI
摘要: Yield prediction is the primary goal of genomic selection (GS)-assisted crop breeding. Because yield is a complex quantitative trait, making predictions from genotypic data is challenging. Transfer learning can produce an effective model for a target task by leveraging knowledge from a different, but related, source domain and is considered a great potential method for improving yield prediction by integrating multi-trait data. However, it has not previously been applied to genotype-to-phenotype prediction owing to the lack of an efficient implementation framework. We therefore developed TrG2P, a transfer-learning-based framework. TrG2P first employs convolutional neural networks (CNN) to train models using non-yield-trait phenotypic and genotypic data, thus obtaining pre-trained models. Subsequently, the convolutional layer parameters from these pre-trained models are transferred to the yield prediction task, and the fully connected layers are retrained, thus obtaining fine-tuned models. Finally, the convolutional layer and the first fully connected layer of the fine-tuned models are fused, and the last fully connected layer is trained to enhance prediction performance. We applied TrG2P to five sets of genotypic and phenotypic data from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) and compared its model precision to that of seven other popular GS tools: ridge regression best linear unbiased prediction (rrBLUP), random forest, support vector regression, light gradient boosting machine (LightGBM), CNN, DeepGS, and deep neural network for genomic prediction (DNNGP). TrG2P improved the accuracy of yield prediction by 39.9%, 6.8%, and 1.8% in rice, maize, and wheat, respectively, compared with predictions generated by the best-performing comparison model. Our work therefore demonstrates that transfer learning is an effective strategy for improving yield prediction by integrating information from non-yield-trait data. We attribute its enhanced prediction accuracy to the valuable information available from traits associated with yield and to training dataset augmentation. The Python implementation of TrG2P is available at https://github.com/lijinlong1991/ TrG2P. The web-based tool is available at http://trg2p.ebreed.cn:81.
分类号:
- 相关文献
作者其他论文 更多>>
-
Early evaluation of aflatoxin occurrence risk using an ultra-sensitive immunoassay for pre-aflatoxin protein biomarker detection
作者:Fu, Jiayun;Gu, Mei;Tang, Xiaoqian;Zhang, Qi;Li, Peiwu;Fu, Jiayun;Gu, Mei;Tang, Xiaoqian;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Zhang, Qi;Li, Peiwu;Li, Peiwu;Li, Peiwu
关键词:Monoclonal antibody; Rolling circle amplification immunoassay; Aflatoxin; Early evaluation; Food safety
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
Carbon nanospheres bridging in perovskite quantum dots/BiOBr: An efficient heterojunction for high-performance photoelectrochemical sensing of deoxynivalenol
作者:Chen, Miao-Miao;Liu, Yuan;Jiang, Jun;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Chen, Miao-Miao;Liu, Yuan;Jiang, Jun;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Chen, Miao-Miao;Liu, Yuan;Jiang, Jun;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Chen, Miao-Miao;Liu, Yuan;Jiang, Jun;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Jiang, Jun;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Zhang, Qi;Li, Peiwu;Tang, Xiaoqian;Zhao, Shuaiqi;Tang, Xiaoqian
关键词:Carbon nanospheres; Perovskite; Heterojunctions; Photoelectrochemical immunosensors; Deoxynivalenol
-
γ-Irradiation effects on the physicochemical properties and biological activities of Schizophyllum commune polysaccharides
作者:Li, Chen;Hu, Guoyuan;Li, Chen;Zhang, Qi;Yin, Chaomin;Gao, Hong;Fan, Xiuzhi;Shi, Defang;Qiu, Jianhui;Zhang, Qi;Li, Zhenshun;Gao, Hong;Chen, Sheng;Yin, Chaomin
关键词:Polysaccharides; gamma-irradiation; Physicochemical and structure properties; Antioxidant activities
-
Effects of age on differential resistance to duck hepatitis A virus genotype 3 in Pekin ducks by 16 S and transcriptomics
作者:Liang, Suyun;Lu, Meixi;Yu, Daxin;Xing, Guangnan;Ji, Zhanqing;Guo, Zhanbao;Zhang, Qi;Huang, Wei;Xie, Ming;Hou, Shuisheng;Hou, Shuisheng
关键词:Pekin duck; Intestinal microbiota; Age; DHAV-3; Resistance differences
-
Control of two insect pests by expression of a mismatch corrected double-stranded RNA in plants
作者:Dong, Yi;Zhang, Qi;Mao, Yarou;Wu, Mengting;Wang, Zican;Chang, Ling;Zhang, Jiang;Zhang, Jiang
关键词:transgenic plants; RNA interference; double-stranded RNA; Bemisia tabaci; Myzus persicae
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network