Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning
文献类型: 外文期刊
第一作者: Zhang Jie
作者: Zhang Jie;Xu Bo;Feng Hai-kuan;Wang Jiao-jiao;Ming Shi-kang;Song Xiao-yu;Zhang Jie;Jing Xia;Fu You-qiang
作者机构:
关键词: Hyperspectral remote sensing; Rice grain protein; Machine Learning; Ensemble algorithms; Adaboost; Random forest
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.609; 五年影响因子:0.516 )
ISSN: 1000-0593
年卷期: 2022 年 42 卷 6 期
页码:
收录情况: SCI
摘要: The use of hyperspectral remote sensing technology to monitor the protein content related to grain quality before rice matures is important. It can promptly adjust cultivation management methods and guide reasonable fertilization and help to grasp rice grain quality information in advance and clarify market positioning. This study took typical high-quality Indica rice in Guangdong Province as the research goal. Two-year nitrogen gradient experiments were carried on in 2019 and 2020. The canopy level hyperspectral data and rice nitrogen parameters, including leaf nitrogen content (LNC) , leaf nitrogen accumulation (LNA) , plant nitrogen content (PNC) , and plant nitrogen accumulation (PNA) , were collected at the rice panicle initiation stage and heading stage. Then, four individual machine learning algorithms, Partial Least Square Regression (PLSR), K-Nearest Neighbor (KNN) Bayesian Ridge Regression (BRR) , Support Vector Regression (SVR) , and three ensemble learning algorithms, Random forest (RF), Adaboost, Bagging were used for monitoring and modeling the nitrogen status of rice at different growth stages. After that, the rice grain protein content estimation models based on rice canopy spectral information, and spectral information combined with rice nitrogen parameterswere constructed by different machine learning algorithms. The rice nitrogen and grain protein content estimation models' accuracy were evaluated and compared. The study results showed that for rice nitrogen nutrition monitoring, using the rice canopy spectral information from 454 similar to 950 nm, the R-2 of LNC, LNA, PNC and PNA estimation models based on RF and Adaboost algorithms achieved above 0. 90 at the rice, heading stage, with low RMSE and MAE. Panicle initiation stage When using full-band spectral information to estimaterice grain protein content, RF had the highest accuracy and stability, with k of 0. 935 and 0. 941, RMSE of 0. 235 and 0. 226, and MAE of 0. 189 and 0. 152 at rice panicle initiation and heading stage, respectively. Adaboost model has the highest accuracy and stability for seed protein monitoring with full-band spectral information combined with growth parameters at both fertility stages, at the panicle initiation stage, the Adaboost algorithm with full-band spectral and PNA data can reach the bestfor rice grain proteinestimation, the R-2, RMSE and MAE was 0. 960, 0. 175, and 0. 150. While at heading stage, the R-2 RMSE and MAE was 0. 963, 0. 170, 0.137, when using Adaboost algorithm with the full-band spectral and PNC data as input parameters. The results showed that the ensemble algorithms RF, Adaboost and Bagging have good ability to deal with multiple covariance compared with several individual learner algorithms PLSR, KNN, BRR and SVR. And they are suitable for the analysis and processing of hyperspectral data, which have obvious advantages in crop nitrogen nutrition monitoring and rice quality early monitoring through remote sensing.
分类号:
- 相关文献
作者其他论文 更多>>
-
Estimation of Potato Plant Nitrogen Content Based on UAV Hyperspectral Imaging
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:UAV; Potato; Hyperspectral; Image features; Plant nitrogen content
-
Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing
作者:Feng Hai-kuan;Zhao Chun-jiang;Feng Hai-kuan;Fan Yi-guang;Yang Gui-jun;Zhao Chun-jiang;Yue Ji-bo
关键词:VGC-AGB model; Hyperspectral remote sensing; Potato; Aboveground biomass (AGB)
-
Monitoring of Nitrogen Content in Winter Wheat Based on UAV Hyperspectral Imagery
作者:Feng Hai-kuan;Fan Yi-guang;Tao Hui-lin;Yang Gui-jun;Zhao Chun-jiang;Feng Hai-kuan;Zhao Chun-jiang;Yang Fu-qin
关键词:Unmanned aerial vehicle; Winter wheat; Hyperspectral; Nitrogen content; Stepwise regression; Spectral feature parameters
-
Estimation of Nitrogen Content in Potato Plants Based on Spectral Spatial Characteristics
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:Unmanned aerial vehicle; Potato; Plantnitrogen content; Vegetation indices; High frequency information
-
Leaf Area Index Estimation Based on UAV Hyperspectral Band Selection
作者:Kong Yu-ru;Wang Li-juan;Xu Yi;Liang Liang;Xu Lu;Zhang Qing-qi;Kong Yu-ru;Feng Hai-kuan;Yang Xiao-dong
关键词:Unmanned aerial vehicle (UAV); Hyperspectral image; Band selection; Winter wheat; Leaf area index
-
Comparison of Machine Learning Algorithms for Remote Sensing Monitoring of Rice Yields
作者:Jing Xia;Zhang Jie;Zhang Jie;Wang Jiao-jiao;Ming Shi-kang;Feng Hai-kuan;Song Xiao-yu;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice yield estimation; Bayesian ridge regression; Support vector regression
-
Estimation of Chlorophyll Content in Winter Wheat Based on UAV Hyperspectral
作者:Feng Hai-kuan;Tao Hui-lin;Zhao Yu;Fan Yi-guang;Yang Gui-jun;Feng Hai-kuan;Yang Fu-qin
关键词:Winter wheat; Chlorophyll content; Vegetation index; Red edge parameter; Partial least squares regression