Estimation of Nitrogen Content in Potato Plants Based on Spectral Spatial Characteristics
文献类型: 外文期刊
第一作者: Fan Yi-guang
作者: Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
作者机构:
关键词: Unmanned aerial vehicle; Potato; Plantnitrogen content; Vegetation indices; High frequency information
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.7; 五年影响因子:0.6 )
ISSN: 1000-0593
年卷期: 2023 年 43 卷 5 期
页码:
收录情况: SCI
摘要: Plant nitrogen content (PNC) is essential for evaluating crop growth and nutritional status. Obtaining crop PNC information quickly and accurately can provide an important basis for formulating and implementing farmland management strategies. Existing studies have shown saturation in estimating crop PNC using only the spectral information of images. Therefore, this research attempted to use vegetation indices ( VIs) combined with two-dimensional discrete wavelet decomposition technology (DWT) to extract high-frequency information(HFI) at multiple scales. It was constructing a spectral, spatial feature (VIs-4 HFI) and exploring the ability of VIs, HFI, and VIs-4 HFI to estimate PNC. First, the UAV was a remote sensing platform to obtain digital images of the five critical nitrogennutrient growth periods of potato budding, tuber formation, tuber growth, starch accumulation, and maturity. It measured PNC data for each growth period. Secondly, based on the pre-processed UAV images, the spectral information of the canopy of each growth period was extracted to construct VIs, and the DWT was used to extract the HFI of each growth period 1-5 scales. Then, the VIs and HFI extracted from each growth period were correlated with the ground-truthed PNC data. The top 7 VIs and the top 10 HFI with larger absolute correlation coefficient values were screened, respectively. To reduce the effect of covariance on the experimental results, the screened HFI were subjected to principal component analysis (PCA) for dimensionality reduction according to the KMO test results. Finally, two methods, ridge regression and extreme learning machine (ELM), were used to construct and evaluate the PNC estimation model of each growth period of potato with VIs, HFI principal components, and VIs HFI principal components as model variables. The results showed that: (1) HFI at different scales contributed to the estimation of PNC in each growth period of potato. (2) The accuracy and stability of the potato PNC estimation model for each growth period constructed with VIs+HFI as model variables werehigher than that of a single VIs and HFI. (3) In each growth period of the potato, the PNC estimation model constructed by the ridge regression method was better than the ELM method. Among them, the PNC estimation model constructed with VIs+HFI as the model variable had the best effect. The modeling R-2 of the five growth periods were 0. 833, 0. 764, 0. 791, 0. 664, 0.435, and the RMSE were 0. 332% 0.297 %,0.275 %,0.286 %,0. 396%; NRMSE were 9. 113% 9. 425% 10. 336% 9. 547%, 15. 166% respectively. This research can provide new technical support for real-time and efficient potato nitrogen nutrition status detection.
分类号:
- 相关文献
作者其他论文 更多>>
-
Estimation of Leaf and Canopy Scale Tea Polyphenol Content Based on Characteristic Spectral Parameters
作者:Duan Dan-dan;Liu Zhong-hua;Duan Dan-dan;Zhao Chun-jiang;Zhao Yu;Wang Fan;Zhao Chun-jiang;Zhao Yu;Wang Fan
关键词:Tea polyphenols; Hyperspectral data; Partial least squares; Random forest; Multiple linear regression
-
Estimation of Potato Plant Nitrogen Content Based on UAV Hyperspectral Imaging
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:UAV; Potato; Hyperspectral; Image features; Plant nitrogen content
-
Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing
作者:Feng Hai-kuan;Zhao Chun-jiang;Feng Hai-kuan;Fan Yi-guang;Yang Gui-jun;Zhao Chun-jiang;Yue Ji-bo
关键词:VGC-AGB model; Hyperspectral remote sensing; Potato; Aboveground biomass (AGB)
-
Monitoring of Nitrogen Content in Winter Wheat Based on UAV Hyperspectral Imagery
作者:Feng Hai-kuan;Fan Yi-guang;Tao Hui-lin;Yang Gui-jun;Zhao Chun-jiang;Feng Hai-kuan;Zhao Chun-jiang;Yang Fu-qin
关键词:Unmanned aerial vehicle; Winter wheat; Hyperspectral; Nitrogen content; Stepwise regression; Spectral feature parameters
-
Leaf Area Index Estimation Based on UAV Hyperspectral Band Selection
作者:Kong Yu-ru;Wang Li-juan;Xu Yi;Liang Liang;Xu Lu;Zhang Qing-qi;Kong Yu-ru;Feng Hai-kuan;Yang Xiao-dong
关键词:Unmanned aerial vehicle (UAV); Hyperspectral image; Band selection; Winter wheat; Leaf area index
-
Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning
作者:Zhang Jie;Xu Bo;Feng Hai-kuan;Wang Jiao-jiao;Ming Shi-kang;Song Xiao-yu;Zhang Jie;Jing Xia;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice grain protein; Machine Learning; Ensemble algorithms; Adaboost; Random forest
-
Comparison of Machine Learning Algorithms for Remote Sensing Monitoring of Rice Yields
作者:Jing Xia;Zhang Jie;Zhang Jie;Wang Jiao-jiao;Ming Shi-kang;Feng Hai-kuan;Song Xiao-yu;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice yield estimation; Bayesian ridge regression; Support vector regression