StraTracker: A dynamic counting method for growing strawberries based on multi-target tracking
文献类型: 外文期刊
第一作者: An, Qilin
作者: An, Qilin;Cui, Yongzhi;Tong, Wenyu;Liu, Yangchun;Zhao, Bo;Wei, Liguo
作者机构:
关键词: Yield estimation; Multiple object tracking; Fruit counting; Appearance features; Data association
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.9; 五年影响因子:9.3 )
ISSN: 0168-1699
年卷期: 2024 年 227 卷
页码:
收录情况: SCI
摘要: Accurately counting fruit in orchards is a critical step for effective digital farming management. However, the variability in fruit size, overlapping shadows, and light interference present significant challenges to applying computer vision during the strawberry growth phase. To address these challenges, we propose StraTracker, a multi-object tracking (MOT) algorithm specifically designed to identify and count strawberries at various growth stages. StraTracker transforms the counting task into a frame-by-frame tracking problem, integrating both motion and appearance features. The algorithm is composed of three key components: a strawberry detector based on YOLOv8n, a feature association module, and a dual-area counting (DC) module. First, the strawberry detector accurately recognizes five growth stages, achieving an average accuracy of 91.93 % at 38.3 FPS. Next, the feature association module, incorporating the Feature Slicing Attention (FSA) and Adaptive Kalman Filtering (AKF) modules, mitigates issues such as light interference, impractical tracking frames, and ID switching (IDs). As a result, StraTracker achieves a Multi-Object Tracking Accuracy (MOTA) of 83.28 % and a Higher-Order Tracking Accuracy (HOTA) of 77.26%, with only 259 IDs, outperforming existing baseline models. Finally, the DC module categorizes fruit counts based on the unique IDs assigned during tracking. The algorithm's coefficient of determination (R2 = 0.91) and GEH of 2.33 indicate a strong correlation between predicted and actual counts. In conclusion, StraTracker offers a promising solution for farmers to optimize planting strategies and develop more precise harvesting plans.
分类号:
- 相关文献
作者其他论文 更多>>
-
Transcriptome and WGCNA reveals the potential genetic basis of photoperiod-sensitive male sterility in soybean
作者:Yang, Yuhua;Xu, Lihong;Wang, Minggui;Chen, Shuichun;Bai, Zhiyuan;Zhang, Haiping;Zhang, Ruijun;Yang, Yuhua;He, Suqin;Zhao, Bo;Wang, Lixiang;He, Suqin;Xu, Lihong;Wang, Minggui;Chen, Shuichun;Yang, Tingting;Zhao, Bo;Wang, Lixiang;Zhang, Jiangjiang
关键词:Soybean; Photoperiod-sensitive genic male sterility; WGCNA; Photoperiod stress; Hybrid breeding
-
Genetic Diversity and Population Structure of the Chinese Three-Keeled Pond Turtle (Mauremys reevesii)
作者:Zhou, Chenyao;Zhu, Xinping;Zhao, Bo;Zhou, Chenyao;Xu, Haoyang;Liu, Haiyang;Li, Jipeng;Li, Wei;Hong, Xiaoyou;Chen, Chen;Ji, Liqin;Zhu, Xinping;Liu, Xiaoli;Xu, Haoyang;Li, Jipeng;Li, Wei;Zhu, Xinping;Liu, Xiaoli
关键词:
Mauremys reevesii ; population genomics; population structure; whole-genome resequencing -
CONSTRUCTION OF FULL-SPACE STATE MODEL AND PREDICTION OF PLANT GROWTH INFORMATION
作者:Wang, Ruixue;Chen, Kaikang;Zhao, Bo;Zhou, Liming;Zhu, Licheng;Lv, Chengxu;Han, Zhenhao;Lu, Kunlei;Feng, Xuguang;Zhao, Siyuan
关键词:Back propagation neural network; Digital twins technology; Lettuce; Plant factory; State prediction
-
Parallel RepConv network: Efficient vineyard obstacle detection with adaptability to multi-illumination conditions
作者:Cui, Xuezhi;Zhu, Licheng;Zhao, Bo;Wang, Ruixue;Han, Zhenhao;Zhang, Weipeng;Dong, Lizhong
关键词:Obstacle detection; Parallel RepConv network (PRCN); Vineyard environment; Balance
-
DESIGN OF A DETECTION AND SORTING SYSTEM FOR BROKEN CORN KERNELS WITH AN ONLINE IDENTIFICATION METHOD
作者:Cui, Chunxiao;Yao, Yanchun;Lin, Jie;Wang, Faying;Li, Xibin;Yao, Yanchun;Cui, Chunxiao;Yao, Yanchun;Li, Xibin;Jiang, Wenjuan;Zhao, Bo
关键词:Broken; Convolutional neural network; Corn kernels; Detection; Sorting
-
Rapid Detection of Ripe Tomatoes in Unstructured Environments
作者:Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Qi, Jiangtao;Cong, Xv;Zhang, Weirong;Gao, Fangfang;Guo, Hui;Zhao, Bo
关键词:DBB heavy parameter; FasterNet; Global attention mechanism; Object detection; Tomato; Unstructured environments; YOLOv7
-
Semantic segmentation-based observation pose estimation method for tomato harvesting robots
作者:Dong, Lizhong;Zhu, Licheng;Zhao, Bo;Wang, Ruixue;Ni, Jipeng;Liu, Suchun;Chen, Kaikang;Cui, Xuezhi;Zhou, Liming
关键词:Machine vision; Deep learning; Semantic segmentation; Harvesting robot