Biochar applications for treating potentially toxic elements (PTEs) contaminated soils and water: a review
文献类型: 外文期刊
第一作者: Zhang, Xu
作者: Zhang, Xu;Zou, Guoyan;Zhou, Li;Zhang, Xu;Chu, Huaqiang;Zhang, Yalei;Zhang, Xu;Zou, Guoyan;Zhou, Li;Shen, Zheng;Abbas, Mohamed H. H.;Albogami, Bader Z.;Abdelhafez, Ahmed A.;Abdelhafez, Ahmed A.
作者机构:
关键词: biochar; soil; water; potentially toxic elements (PTEs); remediation technologies
期刊名称:FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY ( 影响因子:5.7; 五年影响因子:6.2 )
ISSN: 2296-4185
年卷期: 2023 年 11 卷
页码:
收录情况: SCI
摘要: Environmental pollution with potentially toxic elements (PTEs) has become one of the critical and pressing issues worldwide. Although these pollutants occur naturally in the environment, their concentrations are continuously increasing, probably as a consequence of anthropic activities. They are very toxic even at very low concentrations and hence cause undesirable ecological impacts. Thus, the cleanup of polluted soils and water has become an obligation to ensure the safe handling of the available natural resources. Several remediation technologies can be followed to attain successful remediation, i.e., chemical, physical, and biological procedures; yet many of these techniques are expensive and/or may have negative impacts on the surroundings. Recycling agricultural wastes still represents the most promising economical, safe, and successful approach to achieving a healthy and sustainable environment. Briefly, biochar acts as an efficient biosorbent for many PTEs in soils and waters. Furthermore, biochar can considerably reduce concentrations of herbicides in solutions. This review article explains the main reasons for the increasing levels of potentially toxic elements in the environment and their negative impacts on the ecosystem. Moreover, it briefly describes the advantages and disadvantages of using conventional methods for soil and water remediation then clarifies the reasons for using biochar in the clean-up practice of polluted soils and waters, either solely or in combination with other methods such as phytoremediation and soil washing technologies to attain more efficient remediation protocols for the removal of some PTEs, e.g., Cr and As from soils and water.
分类号:
- 相关文献
作者其他论文 更多>>
-
Stomach as the target organ of Rickettsia heilongjiangensis infection in C57BL/6 mice identified by click chemistry
作者:Wang, Juan;Wang, Juan;Wei, Wei;Chen, Zi-Yun;Xiong, Tao;Xia, Luo-Yuan;Jiang, Jia-Fu;Zhu, Dai-Yun;Jia, Na;Cao, Wu-Chun;Du, Li-Feng;Zhang, Ming-Zhu;Xia, Luo-Yuan;Chen, Zi-Yun;Zhang, Xu;Li, Wen-Jun;Wang, Zhen-Fei
关键词:
-
Integrative omics analyses of tea (Camellia sinensis) under glufosinate stress reveal defense mechanisms: A trade-off with flavor loss
作者:Yu, Huan;Miao, Peijuan;Zhou, Chunran;Cheng, Haiyan;Dong, Qinyong;Pan, Canping;Li, Dong;Wu, Yangliu;Zhao, Yingjie;Liu, Zhusheng;Zhao, Yingjie;Zhou, Li
关键词:Tea; Glufosinate; Transcriptome; Metabolomic; Quality
-
Rhein: A potent immunomodulator empowering largemouth bass against MSRV infection
作者:Zhang, Xu;Liu, Lei;Wang, Huan;Qiu, Tianxiu;Zhou, Yan;Shan, Lipeng;Wang, Zixuan;Hu, Yang;Chen, Jiong;Zhang, Xu;Liu, Lei;Wang, Huan;Qiu, Tianxiu;Zhou, Yan;Shan, Lipeng;Wang, Zixuan;Hu, Yang;Chen, Jiong;Xue, Mingyang;Liu, Guanglu
关键词:Rhein; Immunomodulator; Largemouth bass; Apoptosis; Micropterus salmoides rhabdovirus; Antiviral
-
Insight into the Role of the Pore Structure and Surface Functional Groups in Biochar on the Adsorption of Sulfamethoxazole from Synthetic Urine
作者:He, Rui;Hui, Kai;Yao, Hong;Zhang, Xu
关键词:pore structure; surface functional groups; Biochar; sulfamethoxazole removal
-
A phase-separated protein hub modulates resistance to Fusarium head blight in wheat
作者:He, Yi;Wang, Yuhua;Dong, Yifan;Zhang, Zhengguang;Li, Gang;He, Yi;Wu, Lei;Jiang, Peng;Zhang, Xu;Yang, Xiujuan;Tucker, Matthew R.;Xia, Xiaobo;Jiang, Cong;Ma, Hongxiang;Ma, Wujun;Liu, Cong;Whitford, Ryan
关键词:
-
CRISPR/Cas9 revolutionizes Macleaya cordata breeding: a leap in sanguinarine biosynthesis
作者:Sun, Mengshan;Liu, Wei;Zeng, Jianguo;Sun, Mengshan;Zhou, Li;Song, Rong;Sun, Mengshan;Zhong, Xiaohong;Liu, Wei;Zeng, Jianguo;Huang, Peng;Zeng, Jianguo
关键词:
-
Machine learning prediction of biochar physicochemical properties based on biomass characteristics and pyrolysis conditions
作者:Song, Yuanbo;Huang, Zipeng;Jin, Mengyu;Liu, Zhe;Wang, Xiaoxia;Shen, Zheng;Zhang, Yalei;Hou, Cheng;Zhang, Xu;Zhang, Yalei;Zhang, Xu;Shen, Zheng;Zhang, Yalei
关键词:Biochar; Pyrolysis; EXtreme gradient boosting model; Elemental distribution; Aromaticity