Transcriptome Analysis Reveals the Pivotal Genes and Regulation Pathways Under Cold Stress and Identifies SbERF027, an AP2/ERF Gene That Confers Cold Tolerance in Sorghum

文献类型: 外文期刊

第一作者: Lou, Qijin

作者: Lou, Qijin;Wang, Peifeng;Xu, Chen;Chen, Shengyu;Yu, Hao;Zhang, Rui;Tian, Guangling;Hao, Di;Ke, Xianshi;Yu, Shuai;Zhou, Jiajia;Zhao, Yao;Ye, Chao;Guo, Jiyuan;Zhang, Haiyan;Chen, Mo;Liu, Xingbei;Yu, Miao;Xie, Zhigan

作者机构:

关键词: AP2/ERF; cold tolerance; RNA-seq; seedlings; sorghum

期刊名称:PLANTS-BASEL ( 影响因子:4.1; 五年影响因子:4.5 )

ISSN: 2223-7747

年卷期: 2025 年 14 卷 6 期

页码:

收录情况: SCI

摘要: Low temperature at the seedling stage adversely affects sorghum growth and development and limits its geographical distribution. APETALA2/Ethylene-Responsive transcription factors (AP2/ERFs), one of the largest transcription factor families in plants, play essential roles in growth, development, and responses to abiotic stresses. However, the roles of AP2/ERF genes in cold tolerance in sorghum and the mechanisms underlying their effects remain largely unknown. Here, transcriptome sequencing (RNA-seq) was performed on the leaves of sorghum seedlings before and after cold treatment. Several candidate genes for cold tolerance and regulation pathways involved in "photosynthesis" under cold stress were identified via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Additionally, the AP2/ERF family gene SbERF027, a novel regulator of cold tolerance, was functionally identified through a comprehensive analysis. The expression of SbERF027 was high in seedlings and panicles, and its expression was induced by low temperature; the cold-induced expression level of SbERF027 was markedly higher in cold-tolerant accession SZ7 than in cold-sensitive accession Z-5. SbERF027 was detected in the nucleus under both normal and cold stress conditions. In addition, the cold tolerance of SbERF027-overexpressing lines was higher than that of wild-type plants; while the cold tolerance of lines with SbERF027 silenced via virus-induced gene silencing (VIGS) was significantly lower than that of wild-type plants. Further research demonstrated that SNP-911 of the promoter was essential for enhancing cold tolerance by mediating SbERF027 expression. This study lays a theoretical foundation for dissecting the mechanism of cold tolerance in sorghum and has implications for the breeding and genetic improvement of cold-tolerant sorghum.

分类号:

  • 相关文献
作者其他论文 更多>>