Analysis of genetic effects for cooking quality traits of japonica rice across environments

文献类型: 外文期刊

第一作者: Lin, JR

作者: Lin, JR;Shi, CH;Wu, MG;Wu, JG

作者机构:

关键词: cooking quality traits;genetic correlations;genetic main effects;genotype x environment interaction effects;heritabilities;Japonica rice;AMYLOSE CONTENT;CROSSES

期刊名称:PLANT SCIENCE ( 影响因子:4.729; 五年影响因子:5.132 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The genetic effects of the cooking quality traits amylose content (AC) and gel consistency (GC) of japonica rice were analyzed by using a genetic model including genotype x environment (GE) interaction effects for quality traits of the endosperm in cereal crops. The results indicated that AC and GC of japonica rice were greatly controlled by the genetic main effects from endosperm, cytoplasm and maternal plant genes, but were also affected by GE interaction effects. The endosperm effects were most important among genetic main effects for the performance of AC and GC, while the cytoplasmic interaction effect or maternal interaction effects for AC or GC were more essential among GE interaction effects, respectively. Additive effects and cytoplasmic interaction effect were the main factors controlling the performance of AC, but GC was mainly affected by additive effects, additive interaction effects and cytoplasmic interaction effect. The endosperm general heritabilities were the largest ones among heritability components for AC and GC. A significant negative genotypic correlation was found between AC and GC. The genetic effects predicted for 13 parents showed that Liaojing 326 A and Hu 161 were the better parents for improving the rice cooking quality traits. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

分类号: Q94

  • 相关文献

[1]Genotype x environment interactions in sugarcane between China and Australia. Jackson, Phillip,Chen, Xuekuan,Fan, Yuanhong,Liu, Jiayong,Shen, Wankuan,Deng, Haihua,Li, Qiwei,Hu, Fengduo. 2012

[2]Multi-trait QTL analysis for agronomic and quality characters of Agaricus bisporus (button mushrooms). Gao, Wei,Baars, Johan J. P.,Maliepaard, Chris,Visser, Richard G. F.,Sonnenberg, Anton S. M.,Gao, Wei,Zhang, Jinxia. 2016

[3]Models for estimating the leaf NDVI of japonica rice on a canopy scale by combining canopy NDVI and multisource environmental data in Northeast China. Yu Fenghua,Xu Tongyu,Cao Yingli,Du Wen,Yang Guijun,Wang Shu. 2016

[4]Novel pleiotropic loci controlling panicle architecture across environments in japonica rice (Oryza sativa L.). Guo, Yuan,Hong, Delin,Guo, Yuan. 2010

[5]Genetic Structure and Eco-Geographical Differentiation of Cultivated Keng Rice (Oryza sativa L. subsp japonica) in China Revealed by Microsatellites. Zhang Dong-ling,Wang Mei-xing,Qi Yong-wen,Sun Jun-li,Wang Feng-mei,Li Jin-jie,Zhang Hong-liang,Li Zi-chao,Wang Mei-xing,Qi Yong-wen,Sun Jun-li. 2012

[6]Divergent Hd1, Ghd7, and DTH7 Alleles Control Heading Date and Yield Potential of Japonica Rice in Northeast China. Ye, Jing,Niu, Xiaojun,Yang, Yaolong,Wang, Shan,Xu, Qun,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Feng, Yue,Wei, Xinghua,Ye, Jing,Wang, Shu. 2018

[7]The Distribution of Japonica Rice Cultivars in the Lower Region of the Yangtze River Valley is Determined by Its Photoperiod-sensitivity and Heading Date Genotypes. Wei, Xiang-Jin,Jiang, Ling,Xu, Jun-Feng,Liu, Xi,Liu, Shi-Jia,Wan, Jian-Min,Zhai, Hu-Qu,Wan, Jian-Min. 2009

[8]Identification of Quantitative Trait Loci for Grain Traits in Japonica Rice. Li Mao-mao,Xu Lei,Ren Jun-fang,Cao Gui-lan,Han Long-zhi,Li Mao-mao,He Hao-hua,Li Mao-mao,Koh Hee-jong. 2010

[9]Analysis on Genetic Similarity of Japonica Rice Variety from Different Origins of Geography in the World. Shu Ai-ping,Cao Gui-lan,Han Long-zhi,Shu Ai-ping,Hwan, Kim Jong,Seong, Lee Kyu,Zhang San-yuan,Nan Zhong-hao. 2009

[10]Simple sequence repeat markers reveal multiple loci governing grain-size variations in a japonica rice (Oryza sativa L.) mutant induced by cosmic radiation during space flight. Wang, Junmin,Wei, Lijun,Zheng, Tianqing,Zhao, Xiuqin,Xu, Jianlong,Li, Zhikang,Ali, Jauhar.

[11]Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates. Zhang, Wujun,Wu, Longwei,Wu, Xiaoran,Ding, Yanfeng,Li, Ganghua,Weng, Fei,Liu, Zhenghui,Tang, She,Ding, Chengqiang,Wang, Shaohua,Zhang, Wujun,Li, Jingyong. 2016

[12]Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). Zhang, Wujun,Wu, Longmei,Ding, Yanfeng,Wu, Xiaoran,Weng, Fei,Li, Ganghua,Liu, Zhenghui,Tang, She,Ding, Chengqiang,Wang, Shaohua,Zhang, Wujun,Yao, Xiong.

[13]Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Zhang, Hua,Xu, Heng,Feng, Mengjie,Zhu, Ying. 2018

[14]Marker-assisted breeding of Indonesia local rice variety Siputeh for semi-dwarf phonetype, good grain quality and disease resistance to bacterial blight. Luo, Yanchang,Yin, Zhongchao,Zakaria, Sabaruddin,Basyah, Bakhtiar,Luo, Yanchang,Ma, Tingchen,Li, Zefu,Yang, Jianbo,Yin, Zhongchao. 2014

[15]Identification and characterization of a novel Waxy allele from a Yunnan rice landrace. Liu, Linglong,Ma, Xiaodong,Liu, Shijia,Zhu, Changlan,Jiang, Ling,Wang, Yihua,Shen, Yi,Ren, Yulong,Dong, Hui,Chen, Liangming,Liu, Xi,Zhao, Zhigang,Wan, Jianmin,Zhai, Huqu,Wan, Jianmin.

[16]Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx(b) supercript stop pre-mRNAs in rice (Oryza sativa L.). Zeng, Dali,Yan, Meixian,Wang, Yonghong,Liu, Xinfang,Qian, Qian,Li, Jiayang.

[17]Determination of Amylose Content and Its Relationship with RVA Profile Within Genetically Similar Cultivars of Rice (Oryza sativa L. ssp japonica). Wang Xin-qi,Yin Lin-qing,Shen Ge-zhi,Xu Li,Liu Qiao-quan. 2010

[18]Optimisation of near-infrared reflectance model in measuring protein and amylose content of rice flour. Hu, P. S..

[19]In vitro measurement of resistant starch of cooked milled rice and physico-cheMical characteristics affecting its formation. Zhang, Wenwei,Bi, Jingcui,Yan, Xiaoyan,Wang, Hailian,Zhu, Changlan,Wang, Hankang,Wan, Jianmin. 2007

[20]Genetic variation for waxy proteins and starch properties in Chinese winter wheats. He, Zhonghu,Xu, Zhaohua,Xia, Lanqin,Xia, Xianchun,Yan, Jun,Zhang, Yan,Chen, Xinmin. 2006

作者其他论文 更多>>