Mitochondrial proteins differential expression during honeybee (Apis mellifera L.) queen and worker larvae caste determination

文献类型: 外文期刊

第一作者: Begna, Desalegn

作者: Begna, Desalegn;Fang, Yu;Feng, Mao;Li, Jianke

作者机构:

关键词: honeybee;mitochondria;pathways;polymorphism;proteome

期刊名称:JOURNAL OF PROTEOME RESEARCH ( 影响因子:4.466; 五年影响因子:4.352 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Despite their similar genetic makeup, honeybee (A. mellifera) queens and workers show alternative morphologies driven by nutritional difference during the larval stage. Although much research have been done to investigate the causes of honeybee caste polymorphism, information at subcellular protein levels is limited. We analyzed queen- and worker-destined larvae mitochondrial proteome at three early developmental stages using combinations of differential centrifugation, two-dimensional electrophoresis, mass spectrometry, bioinformatics, and quantitative real time PCR. In total, 67, 69, and 97 protein spots were reproducibly identified as mitochondrial proteins at 72, 96, and 120 h, respectively. There were significant qualitative and quantitative protein expression differences between the two castes at three developmental stages. In general, the queen-destined larvae up-regulated large proportions of proteins at all of the developmental stages and, in particular, 95% at 72 h. An overwhelming majority of the queen larvae up-regulated proteins were physiometabolic-enriched proteins (metabolism of carbohydrate and energy, amino acid, and fatty acid) and involved in protein folding, and this was further verified by functional enrichment and biological interaction network analyses as a direct link with metabolic rates and cellular responses to hormones. Although wide-ranging mitochondrial proteomes participate to shape the metabolic, physiologic, and anatomic differences between the two castes at 72 h, physiometabolic-enriched proteins were found as the major modulators of the profound marking of this caste differentiation. Owing to nutritional difference, prospective queen larvae showed enhanced growth, and this was manifested through the overexpression of metabolic enzymes. Differently from similar studies targeting the causes of honeybee caste polymorphism, this subcellular level study provides an in-depth insight into mitochondrial proteins-mediated caste polymorphism and greatly improves protein coverage involved during honeybee caste determination. Hence, it is a major step forward in the analysis of the fundamental causes of honeybee caste pathway decision and greatly contributes to the knowledge of honeybee biology. In particular, the consistency between the 22 proteins and mRNA expressions provides us important target genes for the reverse genetic analysis of caste pathway modulation through RNA interference.

分类号: Q7

  • 相关文献

[1]Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: A deep insight into caste pathway decisions. Begna, Desalegn,Han, Bin,Feng, Mao,Fang, Yu,Li, Jianke.

[2]Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Feng, Mao,Fang, Yu,Han, Bin,Zhang, Lan,Lu, Xiaoshan,Li, Jianke.

[3]Changes of proteome and phosphoproteome trigger embryo-larva transition of honeybee worker (Apis mellifera ligustica). Gala, Alemayehu,Fang, Yu,Woltedji, Dereje,Zhang, Lan,Han, Bin,Feng, Mao,Li, Jianke.

[4]Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.). Fang, Yu,Song, Feifei,Zhang, Lan,Aleku, Dereje Woltedji,Han, Bin,Feng, Mao,Li, Jianke.

[5]Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana). Woltedji, Dereje,Song, Feifei,Zhang, Lan,Gala, Alemayehu,Han, Bin,Feng, Mao,Fang, Yu,Li, Jianke.

[6]Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. Li, Rongli,Zhang, Lan,Fang, Yu,Han, Bin,Lu, Xiaoshan,Zhou, Tiane,Feng, Mao,Li, Jianke,Zhang, Lan. 2013

[7]Proteome Analysis of Hemolymph Changes during the Larval to Pupal Development Stages of Honeybee Workers (Apis mellifera ligustica). Woltedji, Dereje,Fang, Yu,Han, Bin,Feng, Mao,Li, Rongli,Lu, Xiaoshan,Li, Jianke. 2013

[8]Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica). Fang, Yu,Feng, Mao,Han, Bin,Qi, Yuping,Hu, Han,Fan, Pei,Huo, Xinmei,Meng, Lifeng,Li, Jianke.

[9]Isolation and characterization of an oilseed rape MAP kinase BnMPK3 involved in diverse environmental stresses. Yu, SW,Zhang, LD,Zuo, KJ,Tang, DQ,Tang, KX.

[10]Managed honeybee colony losses of the Eastern honeybee (Apis cerana) in China (2011-2014). Chen, Chao,Liu, Zhiguang,Chen, Xiao,Guo, Haikun,Wang, Huihua,Tang, Jiao,Shi, Wei,Chen, Chao,Liu, Zhiguang,Shi, Wei,Luo, Yuexiong,Xu, Zheng,Wang, Shunhai,Zhang, Xuewen,Dai, Rongguo,Gao, Jinglin.

[11]High Concentrations of the Alarm Pheromone Component, Isopentyl Acetate, Reduces Foraging and Dancing in Apis mellifera Ligustica and Apis cerana Cerana. Gong, Zhiwen,Wang, Chao,Dong, Shihao,Tan, Ken,Zhang, Xuewen,Wang, Yanhui,Hu, Zongwen,Tan, Ken.

[12]Phosphoproteomic Analysis of Protein Phosphorylation Networks in the Hypopharyngeal Gland of Honeybee Workers (Apis mellifera ligustica). Qi, Yuping,Fan, Pei,Hao, Yue,Han, Bin,Fang, Yu,Feng, Mao,Cui, Ziyou,Li, Jianke,Fan, Pei,Cui, Ziyou,Cui, Ziyou.

[13]Proteome Comparison of Hypopharyngeal Gland Development between Italian and Royal Jelly-Producing Worker Honeybees (Apis mellifera L). Li Jianke,Feng Mao,Begna, Desalegn,Fang Yu,Zheng Aijuan. 2010

[14]Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers. Han, Bin,Fang, Yu,Feng, Mao,Hu, Han,Qi, Yuping,Huo, Xinmei,Meng, Lifeng,Wu, Bin,Li, Jianke.

[15]Pollen phenolics and regulation of pollen foraging in honeybee colony. Liu, FL,Zhang, XW,Chai, JP,Yang, DR. 2006

[16]Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers. Han, Bin,Fang, Yu,Feng, Mao,Hu, Han,Hao, Yue,Ma, Chuan,Huo, Xinmei,Meng, Lifeng,Zhang, Xufeng,Wu, Fan,Li, Jianke.

[17]Sulfide-based ATP production in Urechis unicinctus. Ma Zhuojun,Bao Zhenmin,Wang Sifeng,Zhang Zhifeng,Ma Zhuojun,Wang Sifeng. 2010

[18]Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed. Xin, Xia,Tian, Qian,Yin, Guangkun,Chen, Xiaoling,Zhang, Jinmei,Lu, Xinxiong,Tian, Qian,Ng, Sophia,Ng, Sophia. 2014

[19]Mitochondrial alterations during Al-induced PCD in peanut root tips. Li, Wen,He, Hu-yi,Li, Chuang-zhen,He, Long-fei,He, Hu-yi.

[20]Mitotype-specific sequences related to cytoplasmic male sterility in Oryza species. Xie, Hongwei,Wang, Jie,Qian, Mingjuan,Li, Nengwu,Zhu, Yingguo,Li, Shaoqing,Xie, Hongwei.

作者其他论文 更多>>