Preparation of a modified flue gas desulphurization residue and its effect on pot sorghum growth and acidic soil amelioration

文献类型: 外文期刊

第一作者: Shi, Lin

作者: Shi, Lin;Li, Yongli;Xu, Peizhi;Xie, Kaizhi;Tang, Shuanhu

作者机构:

关键词: modified flue gas desulphurization residue;amelioration;pot growth;acidic soil;sorghum

期刊名称:JOURNAL OF HAZARDOUS MATERIALS ( 影响因子:10.588; 五年影响因子:10.129 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A modified flue gas desulphurization residue (MFGDR) was prepared and its effects on sorghum growth and acidic soil amelioration were evaluated in this paper. The MFGDR was prepared by calcining a mixture of dry/semi-dry flue gas desulphurization (FGD) residue from a coal-fired power plant, sorted potash feldspar and/or limestone powder. The available nutrients from the MFGDR were determined with 4.91 wt% K-+, 1.15 wt% Mg-(2+), 22.4wt% Ca-(2+) 7.01 wt% Si-(4+) and 2.07 wt% SO_4-(2-)-S in 0.1 mol L-(-1) citric acid solution. Its pH value was held at 9.60 displaying slightly alkaline. The results of sorghum pot growth in both red and crimson acidic soil for 30 days indicated that adding the MFGDR at a dosage of 2 g kg-(-1) in total soil weight would increase the growth rate of biomass by 24.3-149% (wet weight basis) and 47.3-157% (dry weight), the stem length and thickness increase by 5.75-22.1% and 4.76-30.9% in con trast with CK treatment for two test cuttings, respectively. The effect on sorghum growth was attributed to the increase of available nutrients, the enhancement of soil pH value and the reduction of aluminum toxicity in acidic soil due to the addition of the MFGDR. The experimental results also suggested that the MFGDR could be effectively used to ameliorate the acidic soil which is widely distributed throughout the southern China.

分类号: TB1

  • 相关文献

[1]Amelioration of aluminum toxicity in red soil through use of barnyard and green manure. Qin, RJ,Chen, FX. 2005

[2]Limited tissue culture-induced mutations and linked epigenetic modifications in F-1 hybrids of sorghum pure lines are accompanied by increased transcription of DNA methyltransferases and 5-methylcytosine glycosylases. von Wettstein, Diter,Zhang, Meishan,Xu, Chunming,Zhao, Na,Liu, Bao,Zhang, Meishan,Yan, Hongyan. 2009

[3]Applications of xerophytophysiology in plant production - Sorghum plants improved by exposing the mesocotyl as stimulus. Xu, Hui-lian,Xu, Rongyan,Qin, Feifei,Qin, Feifei,Wang, Fahong,Li, Fengmin. 2009

[4]Tannins in livestock feeds in China. Diao, QY,Qi, GG. 2000

[5]Genetic contribution of Chinese landraces to the development of sorghum hybrids. Li, Y,Li, CZ. 1998

[6]Progress in Sorghum Head Smut Research. Bai, Chunming,Lu, Xiaochun,Tao, Chengguang,Liu, Yifei. 2016

[7]Transgenic expression of a sorghum gene (SbLRR2) encoding a simple extracellular leucine-rich protein enhances resistance against necrotrophic pathogens in Arabidopsis. Zhu, Fu-Yuan,Lo, Clive,Zhu, Fu-Yuan,Zhang, Jianhua,Zhu, Fu-Yuan,Zhang, Jianhua,Li, Lei.

[8]Identification of two novel waxy alleles and development of their molecular markers in sorghum. Li, Yan,Fan, Jing,Zhao, Jiqun,Xu, Yongju,Wang, Wenming,Zhao, Ganlin,Ding, Guoxiang,Ni, Xianlin.

[9]Allelopathic effects of Hemistepta lyrata on the germination and growth of wheat, sorghum, cucumber, rape, and radish seeds. Gao, Xingxiang,Li, Mei,Gao, Zongjun,Li, Changsong,Sun, Zuowen.

[10]Nutrient Limiting Factors in Acidic Vegetable Soils. Wang Zheng-Yin,Tu Shi-Hua,Sulewski, G..

[11]Isolation and expression analysis of defense-related genes in sorghum-Colletotrichum sublineolum interaction. Li, Lei,Li, Lei,Zhu, Fuyuan,Chu, Apple,Lo, Clive,Liu, Hongjia.

[12]Molecular cloning and expression analysis of duplicated polyphenol oxidase genes reveal their functional differentiations in sorghum. Yan, Song,Li, Sujuan,Zhai, Guowei,Shao, Jianfeng,Tao, Yuezhi,Zou, Guihua,Yan, Song,Zhu, Shan,Huang, Renliang,Lu, Ping,Deng, Hui.

[13]Genetic Structure Analysis of Sorghum Parent Lines Based on SSR Markers. Wang, L. M.,Yan, X. F.,Wang, L. M.,Jiao, S. J.,Jiang, Y. X.,Yan, H. D.,Su, D. F.,Sun, G. Q.,Sun, L. F.. 2013

[14]Development of Head Smut Resistance-linked Sequence Characterized Amplified Regions Markers in Sorghum. Li, Yueying,Ma, Lianju,Ma, Chunyan,Li, Xuemei,Lu, Dan,Lu, Shuiyi,Hao, Lin,Zou, Jianqiu. 2012

[15]Chinese sorghum genetic resources. Lu, QS,Dahlberg, JA. 2001

[16]Relative susceptibility of different male-sterile cytoplasms in sorghum to shoot fly, Atherigona soccata. Dhillon, MK,Sharma, HC,Reddy, BVS,Singh, R,Naresh, JS,Kai, Z. 2005

[17]Identification of genomic region associated with rice weevil resistance in sorghum [Sorghum bicolor (L.) Moench]. Zhai, Guowei,Wang, Hua,Li, Sujuan,Liu, Heqing,Shao, Jianfeng,Tao, Yuezhi,Zou, Guihua.

[18]Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Wang, Hailian,Chen, Guiling,Zhang, Huawen,Liu, Bin,Yang, Yanbing,Qin, Ling,Chen, Erying,Guan, Yanan.

[19]Allelopathic effects of Conyza canadesis the germination and growth of wheat, sorghum, cucumber, rape and radish. Gao, Xingxiang,Li, Mei,Gao, Zongyun,Zhang, Hongjun,Sun, Zuowen.

[20]Molecular mapping of the brace root traits in sorghum (Sorghum bicolor L. Moench). Li, Ronggai,Han, Yucui,Lv, Peng,Du, Ruiheng,Liu, Guoqing,Li, Ronggai.

作者其他论文 更多>>