The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco

文献类型: 外文期刊

第一作者: Yang, Xiufen

作者: Yang, Xiufen;Zeng, Hongmei;Liu, Hua;Zhou, Tingting;Tan, Beibei;Yuan, Jingjing;Guo, Lihua;Qiu, Dewen

作者机构:

关键词: Elicitor;Hypersensitive response;Purification;Resistance response;Verticillium dahliae

期刊名称:APPLIED MICROBIOLOGY AND BIOTECHNOLOGY ( 影响因子:4.813; 五年影响因子:4.697 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: PevD1, a novel protein elicitor from the pathogenic cotton verticillium wilt fungus, Verticillium dahliae, induced a hypersensitive response in tobacco plants. In this paper, the elicitor was purified and analyzed using de novo sequencing. The protein-encoding pevD1 gene consists of a 468-bp open reading frame that produces a polypeptide of 155 amino acids, with a theoretical molecular weight of 16.23 kDa. The sequence of elicitor protein PevD1 was matched to the genomic sequence (GenBank accession no. ABJE 01000445.1) of a putative protein from V. dahliae strain vdls.17, but a function had not yet been reported. The pevD1 gene was expressed in Escherichia coli, and the recombinant protein was characterized for its ability to confer systemic acquired resistance to tobacco mosaic virus (TMV). Recombinant PevD1-treated plants exhibited enhanced systemic resistance compared to control, including a significant reduction in the number and size of TMV lesions on tobacco leaves. The elicitor protein-induced hydrogen peroxide production, extracellular-medium alkalization, callose deposition, phenolics metabolism, and lignin synthesis in tobacco. Our results demonstrate that elicitor-PevD1 triggers defense responses in intact tobacco plants.

分类号: Q939.9

  • 相关文献

[1]Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco. Liu, Zhipeng,Liu, Wenxian,Zeng, Hongmei,Yang, Xiufen,Guo, Lihua,Qiu, Dewen. 2014

[2]Elicitation of the hypersensitive responses in tabacco by a 10.6 kD proteinaceous elicitor from Phytophthora palmi. Cai, YY,Chen, J. 1999

[3]Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHb1 triggers defense responses and increases disease tolerance in Arabidopsis. Zhong, Nai-Qin,Wang, Hai-Yun,Chen, An-Ping,Jian, Gui-Liang,Xia, Gui-Xian. 2006

[4]Comparison of cerato-platanin family protein BcSpl1 produced in Pichia pastoris and Escherichia coli. Liang, Yingbo,Qiu, Dewen,Yuan, Jingjing,Yang, Xiufen. 2017

[5]A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. Qiu, Dewen,Zeng, Hongmei,Guo, Lihua,Yuan, Jingjing,Yang, Xiufen. 2014

[6]Novel insights into the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by strategic transcriptomic comparisons. Wang, Dan,Li, Chun-Fang,Ma, Chun-Lei,Chen, Liang.

[7]Inhibitory effect of esterified lactoferin and lactoferin against tobacco mosaic virus (TMV) in tobacco seedlings. Wang, Jie,Xia, Xiao-Ming,Li, Peng-peng,Wang, Kai-Yun,Wang, Hong-Yan. 2013

[8]Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Qiu, Dewen,Mao, Jianjun,Yang, Xiufen,Zeng, Hongmei. 2009

[9]Transcriptional Profiling of Rice Treated with MoHrip1 Reveal the Function of Protein Elicitor in Enhancement of Disease Resistance and Plant Growth. Wang, Zhenzhen,Yang, Xiufen,Guo, Lihua,Qiu, Dewen,Zeng, Hongmei. 2016

[10]Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Tang, Yi-Xiong.

[11]Production and metabolic engineering of bioactive substances in plant hairy root culture. Zhou, Mei-Liang,Shao, Ji-Rong,Zhou, Mei-Liang,Tang, Yi-Xiong,Wu, Yan-Min,Zhou, Mei-Liang,Zhu, Xue-Mei.

[12]Induction of phytochemical glyceollins accumulation in soybean following treatment with biotic elicitor (Aspergillus oryzae). Eromosele, Ojokoh,Bo, Shi,Ping, Liang. 2013

[13]Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bai, ZH,Zhang, HX,Qi, HY,Peng, XW,Li, BJ.

[14]Nitric oxide synthase as a postharvest response in pathogen resistance of tomato fruit. Zheng, Yang,Shen, Lin,Yu, Mengmeng,Liu, Lingyi,Sheng, Jiping,Fan, Bei,Zhao, Danying. 2011

[15]Overexpression of the PeaT1 Elicitor Gene from Alternaria tenuissima Improves Drought Tolerance in Rice Plants via Interaction with a Myo-Inositol Oxygenase. Dong, Yijie,Zhang, Yi,Yang, Xiufeng,Qiu, Dewen,Shi, Fachao. 2017

[16]Influence of the application of three different elicitors on soybean plants on the concentrations of several isoflavones in soybean seeds. Zhang, Bo,Hettiarachchy, Navam,Chen, Pengyin,Horax, Ronny,Cornelious, Brian,Zhu, Danhua.

[17]Evaluation of tricin, a stylet probing stimulant of brown planthopper, in infested and non-infested rice plants. Zhang, Z.,Li, Y.,Xiao, H.,Li, Y.,Zhang, Y.,Cui, B.,Yan, S..

[18]Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2. Wang, Meifang,Zeng, Hongmei,Qiu, Dewen,Duan, Liangwei,Liu, Xinqi. 2016

[19]Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Tian, Fang,Li, Jianyu,Chen, Huamin,Yang, Fenghuan,He, Chenyang,Hutchins, William,Yuan, Xiaochen,Yang, Ching-Hong,Cui, Zining.

[20]Comparative Transcriptomic Analysis Reveals That Ethylene/H2O2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata. Wang, Hong,Lin, Jing,Chang, Youhong,Jiang, Cai-Zhong,Jiang, Cai-Zhong. 2017

作者其他论文 更多>>