Expression of Arabidopsis HOMEODOMAIN GLABROUS 11 Enhances Tolerance to Drought Stress in Transgenic Sweet Potato Plants
文献类型: 外文期刊
第一作者: Ruan, Long
作者: Ruan, Long;Chen, Yihong;Zhang, Wei;Gao, Zhengliang;Chen, Lijuan;He, Jinling;Zhang, Yunhua
作者机构:
关键词: Drought stress;HOMEODOMAIN GLABROUS 11;Transgenic;Sweet potato
期刊名称:JOURNAL OF PLANT BIOLOGY ( 影响因子:2.434; 五年影响因子:2.455 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Sweet potato (Ipomoea batatas L. cv. Lizixiang) is a nutritious arable crop with a low drought tolerance during growth and maturation. The Arabidopsis HOMEODOMAIN GLABROUS 11 (HDG11) gene can increase drought tolerance in tobacco and tall fescue plants. To determine the effect of HDG11 in the sweet potato, transgenic plants that expressed the HDG11 gene were generated by Agrobacterium-mediated transformation. Expression of the transgene was confirmed using Southern blotting, reverse transcription-polymerase chain reaction (RT-PCR) and DNA sequencing. Two independent HDG11 transgenic lines were evaluated and increased drought stress tolerance was observed in both lines, compared to wild-type (WT) plants. Under drought stress conditions, net photosynthesis rate (P (n)), the efficiency of excitation energy captured by open PSII reaction centers (F (v)/F (m)) and water use efficiency (WUE) increased, and transpiration rate (T (r)) decreased in HDG11 transgenic plants compared to WT. HDG11 transgenic plants also had decreased lipid membrane oxidative damage, reduced H2O2 accumulation and increased ROS-scavenging enzyme activity during drought stress treatment. This study indicates that overexpression of the Arabidopsis HDG11 gene improved drought tolerance in the sweet potato.
分类号: Q94
- 相关文献
作者其他论文 更多>>
-
Membralin is required for maize development and defines a branch of the endoplasmic reticulum-associated degradation pathway in plants
作者:Liu, Baiyu;Zhang, Ke;Qi, Shoumei;Jin, Zhe;Chen, Donghua;Zhang, Wei;Zhang, Kewei;Li, Kunpeng;Xu, Changzheng;He, Qiuxia;Cheng, Wen;Ding, Zhaohua;Zhao, Xiangyu
关键词:endoplasmic reticulum-associated degradation; maize; membralin; plant development; unfold protein response
-
Biocontrol performance and mass production potential of the larval endoparasitoid Campoletis chlorideae Uchida (Hymenoptera: Ichneumonidae) against the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)
作者:Zhang, Rui;Zhang, Wei;Zhao, Qi;Keyhani, Nemat O.;Lei, Xian-Fu;Liu, Chang-Hua;Al Dhafer, Hathal M.;Mohamed, Amr
关键词:Spodoptera frugiperda; Field investigation; Campoletis chlorideae; Biological control; Mass production; Two-sex life table
-
Construction of a high-density genetic map for yardlong bean and identification of ANT1 as a regulator of anthocyanin biosynthesis
作者:Zhang, Hongmei;Zhang, Wei;Liu, Xiaoqing;Chen, Xin;Chen, Huatao;Meng, Shan;Yan, Wei;Hui, Linchong;Chen, Wei
关键词:
-
Homoeologous exchanges contribute to branch angle variations in rapeseed: Insights from transcriptome, QTL-seq and gene functional analysis
作者:Sun, Chengming;Zhou, Xiaoying;Fu, Sanxiong;Wang, Xiaodong;Peng, Qi;Gao, Jianqin;Chen, Feng;Zhang, Wei;Hu, Maolong;Zhang, Jiefu;Wu, Jian;Liu, Huimin;Wang, Youping;Xue, Zhifei;Fu, Tingdong;Yi, Bin
关键词:Rapeseed; Branch angle; Homoeologous exchange; WGCNA; QTL-seq; WRKY40
-
A genome-wide association analysis for salt tolerance during the soybean germination stage and development of KASP markers
作者:Wang, Junyan;Zhou, Miaomiao;Su, Chengfu;Wang, Junyan;Zhou, Miaomiao;Zhang, Hongmei;Liu, Xiaoqing;Zhang, Wei;Wang, Qiong;Jia, Qianru;Chen, Huatao;Xu, Donghe;Chen, Huatao
关键词:soybean; salt tolerance; germination stage; genome-wide association analysis; KASP marker
-
Urea Coated with Polyaspartic Acid-Chitosan Increases Foxtail Millet (Setaria italica L. Beauv.) Grain Yield by Improving Nitrogen Metabolism
作者:Lu, Lin;Zhang, Wei;Xv, Yanli;Dong, Haosheng;Chen, Disu;Yan, Peng;Dong, Zhiqiang;Wang, Qi;Zhang, Wei;Dong, Zhiqiang;Gao, Ming;Li, Shujie
关键词:fertilizer; nitrate reductase; nitrogen availability; high yield and efficiency; one-time basic fertilizer application
-
Endogenous cell wall degrading enzyme LytD is important for the biocontrol activity of Bacillus subtilis
作者:Wang, Luotao;Chen, Si;Su, Xin;Wang, Zhenshuo;Zeng, Qingchao;Wang, Qi;Li, Yan;Huang, Jianquan;Zhang, Xun;Wang, Lujun;Zhang, Wei
关键词:autolysin; peptidoglycan; cell wall degrading enzyme; colonization; biofilm; induced resistance; biological control