Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.)

文献类型: 外文期刊

第一作者: Zhang, Dongling

作者: Zhang, Dongling;Hao, Chenyang;Wang, Lanfen;Zhang, Xueyong

作者机构:

关键词: Association mapping;Grain number;Mini core collection;SSR;Triticum

期刊名称:PLANTA ( 影响因子:4.116; 五年影响因子:4.316 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Grain number (GN) is one of three major yield-related components in wheat. We used the Chinese wheat mini core collection to undertake a genome-wide association analysis of grain number using 531 SSR markers randomly located on all 21 chromosomes. Grain numbers of all accessions were measured in four trials, i. e. two environments in four growing seasons. Association analysis based on a mixed linear model (MLM) revealed that 27 SSR loci were significantly associated with mean GN (MGN) estimated by the best linear unbiased predictor (BLUP) method. These included numerous breeder favorable alleles with strong positive effects at 23 loci. Significant or extremely significant differences were detected on MGN between varieties conveying favored allele and varieties with other alleles. Moreover, statistical simulation showed that the favored alleles have additive genetic effects. Although modern varieties combined larger numbers of favored alleles, the numbers of favored alleles were not significantly different from those in landraces, especially those alleles contributing mostly to the phenotypic variation. These results indicate that there is still considerable genetic potential for use of markers for genome selection of GN for high yield in wheat.

分类号: Q94

  • 相关文献

[1]Association mapping of dynamic developmental plant height in common wheat. Zhang, Jianan,Hao, Chenyang,Ren, Qian,Chang, Xiaoping,Jing, Ruilian,Zhang, Jianan,Zhang, Jianan,Liu, Guiru.

[2]Association mapping of seed oil and protein contents in upland cotton. Liu, Guizhen,Wang, Sen,Li, Xinghe,Zhu, Xiefei,Zhang, Tianzhen,Mei, Hongxian.

[3]Functional markers in wheat: current status and future prospects. Liu, Yanan,He, Zhonghu,Xia, Xianchun,He, Zhonghu,Appels, Rudi.

[4]Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers. Li, X. J.,Xu, X.,Yang, X. M.,Li, X. Q.,Liu, W. H.,Gao, A. N.,Li, L. H.,Li, X. J.,Xu, X..

[5]Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Jiang, Huifang,Ren, Xiaoping,Chen, Yuning,Huang, Li,Zhou, Xiaojing,Huang, Jiaquan,Liao, Boshou,Froenicke, Lutz,Yu, Jiujiang,Guo, Baozhu. 2013

[6]Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Qian, Wenjing,Wu, Chao,Fu, Yaping,Hu, Guocheng,Liu, Wenzhen,Qian, Wenjing,He, Zhengquan,Wu, Chao.

[7]Fine mapping a domestication-related QTL for spike-related traits in a synthetic wheat. Wang, Jin,Liao, Xiangzheng,Li, Yulian,Zhou, Ronghua,Gao, Lifeng,Jia, Jizeng,Wang, Jin,Yang, Xueju.

[8]08SG2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice. Yuan, Hua,Fan, Shijun,Huang, Juan,Zhan, Shijie,Wang, Shifu,Gao, Peng,Chen, Weilan,Tu, Bin,Ma, Bingtian,Wang, Yuping,Qin, Peng,Li, Shigui,Yuan, Hua,Fan, Shijun,Zhan, Shijie,Wang, Shifu,Gao, Peng,Chen, Weilan,Tu, Bin,Ma, Bingtian,Wang, Yuping,Qin, Peng,Li, Shigui,Huang, Juan. 2017

[9]GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Zhou, Yong,Tao, Yajun,Miao, Jun,Liu, Jun,Liu, Yanhua,Yi, Chuandeng,Yang, Zefeng,Gong, Zhiyun,Liang, Guohua,Zhu, Jinyan. 2017

[10]Identification and characterization of reverse transcriptase domain of mranscriptionally active retrotransposons in wheat genomes. Tang, YM,Ma, YZ,Li, LC,Ye, XG. 2005

[11]THE USE OF CELL-CULTURE FOR SUBCHROMOSOMAL INTROGRESSIONS OF BARLEY YELLOW DWARF VIRUS-RESISTANCE FROM THINOPYRUM-INTERMEDIUM TO WHEAT. BANKS, PM,LARKIN, PJ,BARIANA, HS,LAGUDAH, ES,APPELS, R,WATERHOUSE, PM,BRETTELL, RIS,CHEN, X,XU, HJ,XIN, ZY,QIAN, YT,ZHOU, XM,CHENG, ZM,ZHOU, GH. 1995

[12]Detection of Latent Infection of Wheat Leaves Caused by Blumeria graminis f.sp tritici Using Nested PCR. . 2010

[13]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[14]Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat. Chang, Jianzhong,Zhang, Jianan,Mao, Xinguo,Li, Ang,Jia, Jizeng,Jing, Ruilian.

[15]Effect of alternative tillage and residue cover on yield and water use efficiency in annual double cropping system in North China Plain. He Jin,Wang Qingjie,Li Hongwen,Gao Huanwen,Liu Lijin.

[16]Carotenoids in Staple Cereals: Metabolism, Regulation, and Genetic Manipulation. Zhai, Shengnan,Xia, Xianchun,He, Zhonghu,He, Zhonghu. 2016

[17]Study on the interaction between 3 flavonoid compounds and alpha-amylase by fluorescence spectroscopy and enzymatic kinetics. Li, Y.,Gao, F.,Gao, F.,Zhao, C.,Shan, F.,Bian, J..

[18]Construction, Characterization, and Expressed Sequence Tag (EST) Analysis of Normalized cDNA Library of Thermo-Photoperiod-Sensitive Genic Male Sterile (TPGMS) Wheat from Spike Developmental Stages. Yang, D.,Tang, Z. H.,Zheng, Y. L.,Tang, Z. H.,Zhang, L. P.,Zhao, C. P..

[19]Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. Guo, Zhiai,Song, Yanxia,Zhou, Ronghua,Jia, Jizeng,Guo, Zhiai,Ren, Zhenglong.

[20]Association mapping of yield-related traits and SSR markers in wild soybean (Glycine sofa Sieb. and Zucc.). Hu, Zhenbin,Zhang, Dan,Zhang, Guozheng,Kan, Guizhen,Hong, Delin,Yu, Deyue,Hu, Zhenbin,Zhang, Dan. 2014

作者其他论文 更多>>