QTL detection for node of first fruiting branch and its height in upland cotton (Gossypium hirsutum L.)

文献类型: 外文期刊

第一作者: Li, Chengqi

作者: Li, Chengqi;Dong, Na;Zhao, Haihong;Wang, Rui;Wang, Qinglian;Wang, Changbiao;Wang, Xiaoyun;Xia, Zhe;Converse, Richard

作者机构:

关键词: QTL;Node of first fruiting branch (NFFB);Height of node of first fruiting branch (HNFFB);Single-marker analysis;Common QTL

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The selection and popularization of early-maturing cotton is paramount in resolving the conflict between occupying farmlands utilizing grain and cotton while optimizing agricultural structure. Node of first fruiting branch (NFFB) and its height (HNFFB) can be used as the important indicators to measure cotton earliness. In this study, Baimian2, an early-maturing upland cotton (Gossypium hirsutum L.) variety, was used as the female parent crossed with a late-maturing material (TM-1) and intermediate-maturing variety (CIR12), respectively. Quantitative trait locus (QTL) detection for NFFB and HNFFB was performed within the two F2:3 populations, Baimian2 x TM-1 and Baimian2 x CIR12 by composite interval mapping (CIM) and mixed model CIM (MCIM). Eight QTL (three suggestive and five significant) for NFFB and six QTL (three suggestive and three significant) for HNFFB were detected in both populations, located on C1(A1), C5(A5), C6(A6), C9(A9), C11(A11), C13(A13), C17(D3), C25(D6), C12(A12)/C26(D12) and LG1. Results of QTL are consistent with separation analysis to some extent. The two significant major QTL, qNFFB-17-I for NFFB and qHNFFB-17-I for HNFFB, were detected simultaneously by CIM and MCIM. They had high reliability and could be used for the marker-assisted breeding to improve cotton earliness. Single marker-analysis showed that 11 molecular markers, such as CGR5222, are linked with NFFB and/or HNFFB.Digital Object Identifier http://dx.doi.org/10.1007/s10681-012-0720-2

分类号: S3

  • 相关文献

[1]Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Hittalmani, S,Huang, N,Courtois, B,Venuprasad, R,Shashidhar, HE,Zhuang, JY,Zheng, KL,Liu, GF,Wang, GC,Sidhu, JS,Srivantaneeyakul, S,Singh, VP,Bagali, PG,Prasanna, HC,McLaren, G,Khush, GS. 2003

[2]Regional association analysis-based fine mapping of three clustered QTL for verticillium wilt resistance in cotton (G. hirsutum. L). Yunlei Zhao,Wang, Hongmei,Hongmei Wang,Wei Chen,Pei Zhao,Haiyan Gong,Xiaohui Sang,Yanli Cui. 2017

[3]Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Caixia Lan,Xiaowen Ni,Jun Yan,Yong Zhang,Xianchun Xia,Xinmin Chen,Zhonghu He.

[4]Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Dongyun Ma,Jun Yan,Zhonghu He,Ling Wu,Xianchun Xia.

[5]DISTRIBUTION OF SEVEN GRAIN GENES AND EVALUATION OF THEIR GENETIC EFFECTS ON GRAIN TRAITS. Zhang, Yadong,Zhao, Qingyong,Zhao, Chunfang,Chen, Tao,Zhu, Zhen,Zhou, Lihui,Yao, Shu,Zhao, Ling,Wang, Cailin. 2016

[6]QTL variations for growth-related traits in eight distinct families of common carp (Cyprinus carpio). Lv, Weihua,Yan, Yunqin,Lv, Weihua,Zheng, Xianhu,Kuang, Youyi,Cao, Dingchen,Sun, Xiaowen. 2016

[7]Genetic dissection of growth traits in a Chinese indigenous x commercial broiler chicken cross. Sheng, Zheya,Hu, Xiaoxiang,Li, Ning,Sheng, Zheya,Pettersson, Mats E.,Shen, Xia,Carlborg, Orjan,Luo, Chenglong,Qu, Hao,Shu, Dingming. 2013

[8]A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Hu, Jiang,Wang, Yuexing,Fang, Yunxia,Xu, Jie,Yu, Haiping,Shi, Zhenyuan,Pan, Jiangjie,Zhang, Dong,Zhu, Li,Dong, Guojun,Guo, Longbiao,Zeng, Dali,Zhang, Guangheng,Xie, Lihong,Qian, Qian,Zeng, Longjun,Kang, Shujing,Xiong, Guosheng,Qian, Qian,Li, Jiayang,Li, Jiayang. 2015

[9]New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. Wang, Xiaodong,Yin, Yongtai,Gan, Lu,Yu, Longjiang,Li, Maoteng,Long, Yan,Zhang, Chunyu,Meng, Jinling,Long, Yan,Wang, Xiaodong,Liu, Liezhao. 2015

[10]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[11]QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice. Xia, Xiuzhong,Zhang, Zongqiong,Nong, Baoxuan,Zeng, Yu,Deng, Guofu,Li, Danting,Xiong, Faqian,Wu, Yanyan,Gao, Ju. 2017

[12]Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. Wang, Xiaodong,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Chen, Li,Xiang, Jun,Gan, Jianping,Wang, Aina,Wang, Hao,Tian, Jianhua,Zhao, Xiaoping,Zhao, Yajun,Zhao, Weiguo. 2016

[13]QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.). Liang Hui-zhen,Yu Yong-liang,Wang Shu-feng,Lian Yun,Wang Ting-feng,Wei Yan-li,Gong Peng-tao,Fang Xuan-jun,Liu Xue-yi,Zhang Meng-chen. 2010

[14]Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). Fu, Qiang,Tan, Lubin,Zhu, Zuofeng,Ma, Dan,Fu, Yongcai,Cai, Hongwei,Sun, Chuanqing,Fu, Qiang,Zhang, Peijiang,Zhan, Xinchun. 2010

[15]QTL mapping of resistance to Sporisorium reiliana in maize. Lubberstedt, T,Xia, XC,Tan, G,Liu, X,Melchinger, AE. 1999

[16]Quantitative Trait Loci for Asian Corn Borer Resistance in Maize Population Mc37 x Zi330. Li Xia,He Kang-lai,Wang Zhen-ying,Bai Shu-xiong,Li Xia. 2010

[17]Analysis of QTLs for panicle exsertion and its relationship with yield and yield-related traits in rice (Oryza sativa L.). Zhao, C. F.,Chen, T.,Zhao, Q. Y.,Zhou, L. H.,Zhao, L.,Zhang, Y. D.,Zhu, Z.,Yao, S.,Wang, C. L.. 2016

[18]Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus. Gu, Jianwei,Chao, Hongbo,Li, Maoteng,Gu, Jianwei,Xiang, Jun,Gan, Jianping,Li, Maoteng,Wang, Hao,Li, Yonghong,Li, Dianrong,Lu, Guangyuan,Zhang, Xuekun,Long, Yan. 2017

[19]Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Su, Jun-Ying,Zheng, Qi,Li, Hong-Wei,Li, Bin,Tong, Yi-Ping,Li, Zhen-Sheng,Jing, Rui-Lian. 2009

[20]Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Jiang, L,Liu, SJ,Hou, MY,Tang, JY,Chen, LM,Zhai, HQ,Wan, JM. 2006

作者其他论文 更多>>