Digital gene expression analysis of early root infection resistance to Sporisorium reilianum f. sp zeae in maize

文献类型: 外文期刊

第一作者: Zhang, Shaopeng

作者: Zhang, Shaopeng;Xiao, Yannong;Zheng, Yonglian;Zhao, Jiuran;Wang, Fengge

作者机构:

关键词: Digital gene expression (DGE);Host response;Head smut;Zea mays

期刊名称:MOLECULAR GENETICS AND GENOMICS ( 影响因子:3.291; 五年影响因子:3.257 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The maize smut fungus, Sporisorium reilianum f. sp. zeae, which is an important biotrophic pathogen responsible for extensive crop losses, can infect maize by invading the root during the early seedling stage. In order to investigate disease-resistance mechanisms at this early seedling stage, digital gene expression analysis, which applies a dual-enzyme approach, was used to identify the transcriptional changes in the roots of Huangzao4 (susceptible) and Mo17 (resistant) after root inoculation with S. reilianum. During the infection in the roots, the expression pattern of pathogenesis-related genes in Huangzao4 and Mo17 were significantly differentially regulated at different infection stages. The glutathione S-transferase enzyme activity and reactive oxygen species levels also showed changes before and after inoculation. The total lignin contents and the pattern of lignin depositions in the roots differed during root colonization of Huangzao4 and Mo17. These results suggest that the interplay between S. reilianum and maize during the early infection stage involves many important transcriptional and physiological changes, which offer several novel insights to understanding the mechanisms of resistance to the infection of biotrophic fungal pathogens.

分类号: Q7

  • 相关文献

[1]Genome-wide association study (GWAS) of resistance to head smut in maize. Wang, Ming,Yan, Jianbing,Zhang, Xiaobo,Xiao, Yannong,Zheng, Yonglian,Zhao, Jiuran,Song, Wei. 2012

[2]Development of SNP-based dCAPS markers linked to major head smut resistance quantitative trait locus qHS2.09 in maize. Di, Hong,Liu, Xianjun,Wang, Qiankun,Zhang, Lin,Wang, Zhenhua,Weng, Jianfeng,Li, Xinhai.

[3]Floral transition in maize infected with Sporisorium reilianum disrupts compatibility with this biotrophic fungal pathogen. Zhang, Shaopeng,Xiao, Yannong,Zheng, Yonglian,Gardiner, Jack,Zhao, Jiuran,Wang, Fengge.

[4]Host Differences Affecting Resistance and Susceptibility of the Second Generation of a Pekin Duck Flock to Duck Hepatitis A Virus Genotype 3. Wang, Xiaoyan,Zhang, Jiaojiao,Meng, Runze,Jiang, Yong,Liang, Suyun,Zhang, Yunsheng,Xie, Ming,Zhou, Zhengkui,Hou, Shuisheng. 2017

[5]Gene expression analysis of host spleen responses to Marek's disease virus infection at late tumor transformation phase. Lian, L.,Qu, L. J.,Sun, H. Y.,Chen, Y. M.,Yang, N.,Lamont, S. J.,Liu, C. J.. 2012

[6]Plasma proteomic profiles of healthy and mastitic cows - host responses to bovine mastitis. Niu, LiLi,Niu, LiLi,Wei, CaiHong,Du, LiXin. 2013

[7]Haemocyte protein expression profiling of scallop Chlamys farreri response to acute viral necrosis virus (AVNV) infection. Wang, Chongming,Chen, Guofu,Zhang, Chunyun,Xu, Zhong,Yan, Peisheng,Li, Chenghua.

[8]Digital Gene Expression Analysis of Ponkan Mandarin (Citrus reticulata Blanco) in Response to Asia Citrus Psyllid-Vectored Huanglongbing Infection. Zhong, Yun,Cheng, Chunzhen,Jiang, Bo,Jiang, Nonghui,Hu, Minlun,Zhong, Guangyan,Cheng, Chunzhen,Zhang, Yongyan,Jiang, Bo,Jiang, Nonghui,Hu, Minlun,Zhong, Guangyan. 2016

[9]Identification of differentially expressed genes using digital gene expression profiles in Pyrus pyrifolia Nakai cv. Hosui bud release following early defoliation. Tao, Shu-tian,Li, Meng,Qi, Xiao-xiao,Wu, Jun,Yin, Hao,Zhang, Shao-ling,Zhang, Quan-jun,Deng, Jia-lin. 2015

[10]RNA-seq-based digital gene expression analysis reveals modification of host defense responses by rice stripe virus during disease symptom development in Arabidopsis. Sun, Feng,Fang, Peng,Li, Juan,Du, Linlin,Lan, Ying,Zhou, Tong,Fan, Yongjian,Zhou, Yijun,Fang, Peng,Shen, Wenbiao. 2016

[11]Comparison of transcriptomes undergoing waterlogging at the seedling stage between tolerant and sensitive varieties of Brassica napus L.. Zou Xi-ling,Zeng Liu,Lu Guang-yuan,Cheng yong,Xu Jin-song,Zhang Xue-kun. 2015

[12]Transcriptome Profile Analysis of Maize Seedlings in Response to High-salinity, Drought and Cold Stresses by Deep Sequencing. Shan, Xiaohui,Yuan, Yaping,Li, Yidan,Jiang, Yu,Jiang, Zhilei,Hao, Wenyuan.

[13]Transcriptome profiling reveals the candidate genes associated with aroma metabolites and emission of pear (Pyrus ussuriensis cv.). Wei, Shuwei,Tao, Shutian,Qin, Gaihua,Wu, Jun,Wu, Juyou,Zhang, Shaoling,Wei, Shuwei,Wang, Shaomin,Tao, Jihan.

[14]QTL mapping of resistance to Sporisorium reiliana in maize. Lubberstedt, T,Xia, XC,Tan, G,Liu, X,Melchinger, AE. 1999

[15]Inhibition of the spread of endophytic Sporisorium reilianum renders maize resistance to head smut. Zhao, Xianrong,Ye, Jianrong,Wei, Lai,Zhang, Nan,Zuo, Weiliang,Chao, Qing,Xu, Mingliang,Zhao, Xianrong,Xing, Yuexian,Tan, Guoqing,Chao, Qing. 2015

[16]Progress in Sorghum Head Smut Research. Bai, Chunming,Lu, Xiaochun,Tao, Chengguang,Liu, Yifei. 2016

[17]ZmWAK, a quantitative resistance gene to head smut in maize, improves yield performance by reducing the endophytic pathogen Sporisorium reiliana. Konlasuk, Suvimon,Zhang, Nan,Zuo, Weiliang,Zhang, Boqi,Xu, Mingliang,Xing, Yuexian,Tan, Guoqing.

[18]Identification of a New Race of Sporisorium reilianum and Characterization of the Reaction of Sorghum Lines to Four Races of the Head Smut Pathogen. Zhang, Fuyao,Ping, Junai,Du, Zhihong,Cheng, Qingjun,Zhang, Fuyao,Huang, Yinghua,Zhang, Fuyao,Huang, Yinghua. 2011

[19]Pyramiding Resistance Genes to Northern Leaf Blight and Head Smut in Maize. Wu Suwen,Zhang Chunyu,Li Nan,Sun Quan,Miao Qing,Lin Feng,Khalid, Hussain,Jiang Min. 2012

[20]Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Zhao, Xianrong,Wei, Lai,Chao, Qing,Zuo, Weiliang,Xu, Mingliang,Tan, Guoqing,Xing, Yuexian,Luebberstedt, Thomas.

作者其他论文 更多>>