Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)

文献类型: 外文期刊

第一作者: Zhang, Lei

作者: Zhang, Lei;Li, Qiong;Ma, Lifeng;Ruan, Jianyun;Zhang, Lei;Li, Qiong;Ma, Lifeng;Ruan, Jianyun

作者机构:

关键词: Camellia sinensis;Tea;Fluoride;Active uptake;Passive uptake;Kinetics;Root;Anion channel;Metabolism inhibitor;Fluoride accumulating plants

期刊名称:PLANT AND SOIL ( 影响因子:4.192; 五年影响因子:4.712 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Tea plants (Camellia sinensis (L.) O. Kuntze) accumulate high fluoride in the leaves whereas the mechanism on its uptake is poorly understood. The measured F- uptake was compared to calculated uptake from transpiration rates assumuing no discrimination between F- and water to characterize the property of F- absorption by tea plant roots. The F- uptake was examined by depletion method under variable external F- concentrations, pH, temperature, relative air humidity, anion channel blockers and metabolism inhibitors in solution experiments. Measured F- uptake rates were significantly larger than those calculated from transpiration rates regardless of external F- concentrations, uptake durations, relative humidity, and solution pH. The measured and net F- uptake (subtracting that calculated from transpiration rate from the measured uptake) were reduced by low temperature and inhibited by anion channel and metabolism inhibitors anthracene-9-carboxylic acid (A-9-C), niflumic acid (NFA), and carbonylcyanide m-chlorophenylhydrazone (CCCP) but not by dihydro-4, 4' diisothiocyanostilbene-2, 2'-disulphonic acid (DIDS). The F- uptake showed biphasic response patterns, following saturable Michaelis-Menten kinetics in the range of low external F- (below 100 mu mol L-1) while increased linearly with external supply in the range of high concentrations. The uptake of F- by roots of accumulator tea plants was likely an active process and energy-dependent. This helps to explain why tea plants are able to accumulate considerably high F-.

分类号: S15

  • 相关文献

[1]The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.). Ruan, JY,Ma, LF,Shi, YZ,Han, WY. 2004

[2]Importance of plant species and external silicon concentration to active silicon uptake and transport. Liang, Yongchao,Hua, Haixia,Zhu, Yong-Guan,Zhang, Jie,Cheng, Chunmei,Roemheld, Volker. 2006

[3]Aluminium absorption by intact roots of the Al-accumulating plant Camellia sinensis L.. Ruan, JY,Wong, MH.

[4]Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Zeng, Lanting,Zhou, Ying,Fu, Xiumin,Mei, Xin,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Zeng, Lanting,Zhou, Ying,Fu, Xiumin,Mei, Xin,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Zeng, Lanting,Cheng, Sihua,Gui, Jiadong,Yang, Ziyin,Dong, Fang,Tang, Jinchi,Tang, Jinchi,Ma, Shengzhou. 2017

[5]Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Mei, Xin,Liu, Xiaoyu,Zhou, Ying,Wang, Xiaoqin,Zeng, Lanting,Fu, Xiumin,Yang, Ziyin,Mei, Xin,Liu, Xiaoyu,Zhou, Ying,Wang, Xiaoqin,Zeng, Lanting,Fu, Xiumin,Yang, Ziyin,Liu, Xiaoyu,Wang, Xiaoqin,Zeng, Lanting,Yang, Ziyin,Li, Jianlong,Tang, Jinchi,Li, Jianlong,Tang, Jinchi,Dong, Fang. 2017

[6]alpha-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Zeng, Lanting,Liao, Yinyin,Zhou, Ying,Yang, Ziyin,Zeng, Lanting,Liao, Yinyin,Zhou, Ying,Yang, Ziyin,Zeng, Lanting,Liao, Yinyin,Yang, Ziyin,Li, Jianlong,Tang, Jinchi,Li, Jianlong,Tang, Jinchi,Dong, Fang.

[7]Cloning and characterization of an S-RNase gene in Camellia sinensis. Zhang, Cheng-Cai,Tan, Li-Qiang,Wang, Li-Yuan,Wei, Kang,Wu, Li-Yun,Zhang, Fen,Cheng, Hao,Zhang, Cheng-Cai,Tan, Li-Qiang,Wang, Li-Yuan,Wei, Kang,Wu, Li-Yun,Zhang, Fen,Cheng, Hao,Zhang, Cheng-Cai,Ni, De-Jiang,Tan, Li-Qiang.

[8]Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. Zhang, Cheng-Cai,Wang, Li-Yuan,Wei, Kang,Wu, Li-Yun,Li, Hai-Lin,Zhang, Fen,Cheng, Hao,Zhang, Cheng-Cai,Ni, De-Jiang. 2016

[9]Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ruan, Jianyun,Gerendas, Joska,Hardter, Rolf,Sattelmacher, Burkhard.

[10]Antioxidant system of tea (Camellia sinensis) leaves in response to phosphorus supply. Chen, Li-Song,Lin, Zheng-He,Chen, Li-Song,Lin, Zheng-He,Chen, Li-Song,Lin, Zheng-He,Chen, Rong-Bing,Zhang, Fang-Zhou. 2012

[11]Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity. Han, Wenyan,Kemmitt, Sarah J.,Brookes, Philip C.. 2007

[12]Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. Li, Y. C.,Li, Z.,Li, Z. W.,Jiang, Y. H.,Lin, W. X.,Li, Y. C.,Weng, B. Q..

[13]Functional characterizations of beta-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Zhou, Ying,Zeng, Lanting,Gui, Jiadong,Liao, Yinyin,Yang, Ziyin,Zhou, Ying,Zeng, Lanting,Gui, Jiadong,Liao, Yinyin,Yang, Ziyin,Zeng, Lanting,Gui, Jiadong,Yang, Ziyin,Li, Jianlong,Tang, Jingchi,Li, Jianlong,Tang, Jingchi,Meng, Qing,Dong, Fang.

[14]Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Zhou, Ying,Zeng, Lanting,Liu, Xiaoyu,Gui, Jiadong,Mei, Xin,Fu, Xiumin,Yang, Ziyin,Zhou, Ying,Zeng, Lanting,Liu, Xiaoyu,Gui, Jiadong,Mei, Xin,Fu, Xiumin,Yang, Ziyin,Zeng, Lanting,Liu, Xiaoyu,Gui, Jiadong,Yang, Ziyin,Dong, Fang,Tang, Jingchi,Tang, Jingchi,Zhang, Lingyun.

[15]Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. Chen, L,Yamaguchi, S.

[16]Differential aluminum resistance and organic acid anions secretion in triticale. Liu, Qiang,He, Li Sheng,Wang, Zheng Yuan,Cheng, Xie Zheng,Zheng, Shao Jian. 2007

[17]Potassium release rates from ustisols and their application. Lu, XN,Zhang, MH,Xu, JM.

[18]Substitution of Krill meal for Fish Meal in Feed for Russian Sturgeon, Acipenser gueldenstaedtii. Gong, Yang-yang,Huang, Yan-qing,Gao, Lu-jiao,Lu, Jian-xue,Huang, Hong-liang,Xia, Yong-tao. 2016

[19]ACCUMULATION OF FLUORIDE AND ALUMINIUM RELATED TO DIFFERENT VARIETIES OF TEA PLANT. Ruan, JY,Wong, MH.

[20]Effects of fluoride and aluminum on expressions of StAR and P450scc of related steroidogenesis in guinea pigs' testis. Dong, Chunguang,Cao, Jinling,Cao, Chunfang,Wang, Jundong,Dong, Chunguang,Han, Yichao,Wu, Shouyan,Wang, Shaolin,Wang, Jundong.

作者其他论文 更多>>