De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress

文献类型: 外文期刊

第一作者: Shen, Xinlian

作者: Shen, Xinlian

作者机构:

关键词: Gene expression profiles;RNA sequencing;Salinity

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Salinity stress is one of the most serious factors that impede the growth and development of various crops. Wild Gossypium species, which are remarkably tolerant to salt water immersion, are valuable resources for understanding salt tolerance mechanisms of Gossypium and improving salinity resistance in upland cotton. To generate a broad survey of genes with altered expression during various stages of salt stress, a mixed RNA sample was prepared from the roots and leaves of Gossypium aridum plants subjected to salt stress. The transcripts were sequenced using the Illumina sequencing platform. After cleaning and quality checks, approximately 41.5. million clean reads were obtained. Finally, these reads were eventually assembled into 98,989 unigenes with a mean size of 452. bp. All unigenes were compared to known cluster of orthologous groups (COG) sequences to predict and classify the possible functions of these genes, which were classified into at least 25 molecular families. Variations in gene expression were then examined after exposing the plants to 200. mM NaCl for 3, 12, 72 or 144. h. Sequencing depths of approximately six million raw tags were achieved for each of the five stages of salt stress. There were 2634 (1513 up-regulated/1121 down-regulated), 2449 (1586 up-regulated/863 down-regulated), 2271 (946 up-regulated/1325 down-regulated) and 3352 (933 up-regulated/2419 down-regulated) genes that were differentially expressed after exposure to NaCl for 3, 12, 72 and 144. h, respectively. Digital gene expression analysis indicated that pathways involved in "transport", "response to hormone stimulus" and "signaling" play important roles during salt stress, while genes involved in "protein kinase activity" and "transporter activity" undergo major changes in expression during early and later stages of salt stress, respectively.

分类号: R394

  • 相关文献

[1]Transcriptome profile and differentially expressed genes analysis in winter wheat under cold stress conditions. Xie, Dongwei,Li, Zhuofu,Xie, Dongwei. 2015

[2]Improvement of soybean transformation via Agrobacterium tumefaciens methods involving alpha-aminooxyacetic acid and sonication treatments enlightened by gene expression profile analysis. Zhang, Yan-Min,Liu, Zi-Hui,Yang, Rui-Juan,Li, Guo-Liang,Guo, Xiu-Lin,Zhang, Hua-Ning,Zhang, Hong-Mei,Di, Rui,Zhao, Qing-Song,Zhang, Meng-Chen.

[3]Analysis of sea-island cotton and upland cotton in response to Verticillium dahliae infection by RNA sequencing. Quan Sun,Huaizhong Jiang,Xiaoyan Zhu,Weina Wang,Xiaohong He,Yuzhen Shi,Youlu Yuan,Xiongming Du,Yingfan Cai. 2013

[4]Dissection of Myogenic Differentiation Signatures in Chickens by RNA-Seq Analysis. Li, Tingting,Zhang, Genxi,Wu, Pengfei,Liu, Qiuhong,Wang, Jinyu,Duan, Lian,Li, Guohui. 2018

[5]An efficient and rapid method to detect and verify natural antisense transcripts of animal genes. Zhang Li,Zhao Rui,Xiao Mei,An Li-long,Lin Shu-dai,Li Bi-xiao,Qiu Feng-fang,Ma Jing-e,Zhang De-xiang,Nie Qing-hua,Zhang Xi-quan. 2016

[6]Whole genome re-sequencing and transcriptome analysis of the Stylosanthes Anthracnose pathogen Colletotrichum gloeosporioides reveal its characteristics. Huang, H. P.,Huang, H. P.,Huang, J. H.,Zheng, J. L.,Yi, K. X.,Ma, S.. 2016

[7]An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). Ye, Jiang,Yang, Yuhua,Shi, Jiaqin,Zhan, Jiepeng,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong,Chen, Bo,Luo, Meizhong. 2017

[8]Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling. Li, Jie,Yu, Jihua,Lyu, Jian,Zhang, Guobin,Feng, Zhi,Xie, Jianming,Yang, Ping,Kang, Jungen,Gan, Yantai,Gan, Yantai,Calderon-Urrea, Alejandro. 2016

[9]Hepatic transcriptome analysis of juvenile GIFT tilapia (Oreochromis niloticus), fed diets supplemented with different concentrations of resveratrol. Zheng, Yao,Wu, Wei,Hu, Gengdong,Meng, Shunlong,Fan, Limin,Song, Chao,Qiu, Liping,Chen, Jiazhang,Zhao, Zhixiang,Chen, Jiazhang,Chen, Jiazhang. 2018

[10]Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice. Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Yu, Ting. 2017

[11]Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage(Brassica macrocarpa Guss.) in Response to Plasmodiophorabrassicae during Different Infection Stages. Zhang, Xiaoli,Liu, Yumei,Fang, Zhiyuan,Li, Zhansheng,Yang, Limei,Zhuang, Mu,Zhang, Yangyong,Lv, Honghao. 2016

[12]Comparative transcriptome analyses indicate enhanced cellular protection against FMDV in PK15 cells pretreated with IFN-gamma. Fu, Yin,Zhu, Zesen,Liu, Jing,Chen, Huiyong,Fu, Yin,Zhu, Zesen,Liu, Jing,Chen, Huiyong,Chang, Huiyun,Liu, Zaixin.

[13]Transcriptome analysis reveals translational regulation in barley microspore-derived embryogenic callus under salt stress. Liu, Cheng-hong,Lu, Rui-ju,Guo, Gui-mei,He, Ting,Li, Ying-bo,Xu, Hong-wei,Gao, Run-hong,Chen, Zhi-wei,Huang, Jian-hua,Liu, Cheng-hong,Lu, Rui-ju,Guo, Gui-mei,He, Ting,Li, Ying-bo,Xu, Hong-wei,Gao, Run-hong,Chen, Zhi-wei,Huang, Jian-hua.

[14]Analysis of differentially expressed genes and adaptive mechanisms of Prunus triloba Lindl. under alkaline stress. Wang, Yongqing,Liu, Jia,Liu, Jia,Li, Qingtian. 2017

[15]Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. Huang, Liyu,Zhang, Fan,Zhang, Fan,Wang, Wensheng,Zhou, Yongli,Fu, Binying,Li, Zhikang,Zhang, Fan. 2014

[16]Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach. Cao, Ke,Ding, Tiyu,Mao, Dongmin,Zhu, Gengrui,Fang, Weichao,Chen, Changwen,Wang, Xinwei,Wang, Lirong. 2018

[17]De novo assembly and characterization of skin transcriptome using RNAseq in sheep (Ovis aries). Yue, Y. J.,Yang, B. H.,Yue, Y. J.,Liu, J. B.,Yang, M.,Han, J. L.,Guo, T. T.,Guo, J.,Feng, R. L.,Yang, B. H.. 2015

[18]Transcriptomics analysis of the flowering regulatory genes involved in the herbicide resistance of Asia minor bluegrass (Polypogon fugax). Zhou, Fengyan,Zhang, Yong,Wang, Mei,Gao, Tongchun,Tang, Wei. 2017

[19]MicroRNA expression profiling of primary sheep testicular cells in response to bluetongue virus infection. Du, Junzheng,Gao, Shandian,Tian, Zhancheng,Xing, Shanshan,Huang, Dexuan,Zhang, Guorui,Zheng, Yadong,Liu, Guangyuan,Luo, Jianxun,Chang, Huiyun,Yin, Hong,Yin, Hong.

[20]Identification of genes alternatively spliced in developing maize endosperm. Xie, S.,Zhang, J.,Xie, S.,Zhang, X.,Zhou, Z.,Li, X.,Weng, J.,Huang, Y.. 2018

作者其他论文 更多>>