Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China

文献类型: 外文期刊

第一作者: Liu, Xiaoyu

作者: Liu, Xiaoyu;Zheng, Jinwei;Zhang, Bin;Lu, Haifei;Pan, Genxing;Li, Lianqing;Zheng, Jufeng;Zhang, Xuhui;Wang, Jiafang;Yu, Xinyan;Chi, Zhongzhi

作者机构:

关键词: Biochar;Rice paddy soil;Microbial community structure;abundance;Soil enzymes

期刊名称:APPLIED SOIL ECOLOGY ( 影响因子:4.046; 五年影响因子:4.884 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Biochar's role on greenhouse gas emission and plant growth has been well addressed. However, there have been few studies on changes in soil microbial community and activities with biochar soil amendment ( BSA) in croplands. In a field experiment, biochar was amended at rates of 0,20 and 401 ha 1 (CO, C1 and C2, respectively) in May 2010 before rice transplantation in a rice paddy from Sichuan, China. Topsoil (0-15 cm ) was collected from the rice paddy while rice harvest in late October 2011. Soil physico-chemical properties and microbial biomass carbon (MBC) and nitrogen (MBN) as well as selected soil enzyme activities were determined. Based on 16S rRNA and 18S rRNA gene, bacterial and fungal community structure and abundance were characterized using terminal-restriction fragment length polymorphism (T-RFLP) combined with clone library analysis, denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR assay (qPCR). Contents of SOC and total N and soil pH were increased but bulk density decreased significantly. While no changes in MBC and MBN, gene copy numbers of bacterial 16S rRNA was shown significantly increased by 28% and 64% and that of fungal 18S rRNA significantly decreased by 35% and 46% under BSA at 20 and 40tha 1 respectively over control. Moreover, there was a significant decrease by 70% in abundance of Methylophilaceae and of Hydrogenophilaceae with an increase by 45% in Anaerolineae abundance under BSA at 40tha~' over control. Whereas, using sequencing DGGE bands of fungal 18S rRNA gene, some bands affiliated with Ascomycota and Glomeromycota were shown inhibited by BSA at rate of 40tha~'. Significant increases in activities of dehydrogenase, alkaline phosphatases while decreased (3-glucosidase were also observed under BSA. The results here indicated a shift toward a bacterial dominated microbial community in the rice paddy with BSA.

分类号: S154.1

  • 相关文献

[1]Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. Gao Lin,Shen Guoming,Zhang Jixu,Zhang Jiguang,Wang Rui,Meng Guixing. 2017

[2]Influence of butachlor on soil enzymes and microbial growth. Xia, Xiaoming,Zhao, Ming,Wang, Hongyan,Ma, Hui.

[3]SOIL ECOLOGICAL SAFETY EVALUATION FOR BIVALENT TRANSGENIC COTTON PLANTS: ROOT EXUDATES VERSUS SOIL ENZYME ACTIVITIES AND SOIL MICROBIAL DIVERSITY. Wu, H-S,Shi, X.,Li, J.,Xu, Y.,Chen, S-Y,Ren, Q-Q,Liu, Y-D,Xiao, S-H. 2016

[4]In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Sun, Yuebing,Li, Ye,Xu, Yingming,Liang, Xuefeng,Wang, Lin,Sun, Yuebing,Xu, Yingming,Liang, Xuefeng,Wang, Lin. 2015

[5]Effects of Vinasse and Press Mud Application on the Biological Properties of Soils and Productivity of Sugarcane. Tan, Hong-Wei,Li, Yang-Rui,Yang, Shang-Dong,Tan, Hong-Wei,Li, Yang-Rui,Yang, Shang-Dong,Tan, Hong-Wei,Li, Yang-Rui,Yang, Shang-Dong,Liu, Jun-Xian,Wu, Jun,Li, Yang-Rui. 2013

[6]Soil microbial activity, aggregation and nutrient responses to straw pulping liquor in corn cropping. Xiao, C.,Stevens, R.,Fauci, M.,Bolton, R.,Lewis, M.,McKean, W. T.,Bezdicek, D. F.,Pan, W. L.. 2007

[7]Soil Aggregation and Microbial Responses to Straw Pulping Byproducts. Xiao, C.,Fauci, A.,Bezdicek, D. F.,Pan, W. L.,Xiao, C.,McKean, W. T..

[8]Effects of the Biocontrol Agent Aspergillus flavipes on the Soil Microflora and Soil Enzymes in the Rooting Zone of Pepper Plants Infected with Phytophthora capsici. Wang, Hui,Liu, Changyuan,Liu, Li,Yu, Shuyi,Liang, Chunhao,Guan, Tianshu,Zhao, Kuihua,Zhao, Xinhua,Irfan, Muhammad.

[9]Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Wang, Peng,Wang, Yin,Wang, Peng,Wu, Qiang Sheng.

[10]Phyllosphere bacterial communities associated with the degradation of acetamiprid in Phaseolus vulgaris. Zhou, Yu,Xu, Junfeng,Wang, Wei,Chen, Xiaoyun,Qiao, Xiongwu,Zhou, Yu,Li, Wenjun,Zhou, Yu,Li, Wenjun. 2011

[11]The host species affects the microbial community in the goat rumen. Shi, P. J.,Meng, K.,Zhou, Z. G.,Wang, Y. R.,Diao, Q. Y.,Yao, B.. 2008

[12]Soil microbial communities and enzyme activities in a reclaimed coastal soil chronosequence under rice-barley cropping. Fu, Qinglin,Liu, Chen,Ding, Nengfei,Lin, Yicheng,Guo, Bin,Luo, Jiafa,Wang, Hailong. 2012

[13]2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-Methoxy-benzoxazolin-2-one (MBOA) Levels in the Wheat Rhizosphere and Their Effect on the Soil Microbial Community Structure. Kong, Chui-Hua,Zhang, Song-Zhu,Zheng, Yong-Quan,Li, Jing,Liu, Xing-Gang.

[14]Impact of imazethapyr on the microbial community structure in agricultural soils. Zhang, Changpeng,Xu, Jun,Liu, Xingang,Dong, Fengshou,Kong, Zhiqiang,Sheng, Yu,Zheng, Yongquan,Zhang, Changpeng.

[15]Structural and functional response of soil microbiota to addition of plant substrate are moderated by soil Cu levels. Wakelin, Steven Alan,McLaughlin, Mike J.,Clarke, K. R.,Chu, Guixin,Broos, Kris,Wakelin, Steven Alan,Broos, Kris,Liang, Yongchao,McLaughlin, Mike J..

[16]Manure substitution of mineral fertilizers increased functional stability through changing structure and physiology of microbial communities. Yue, Xianlu,Shi, Andong,Yao, Shuihong,Zhang, Bin,Zhang, Jiguang.

[17]Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Ding, Jianli,Jiang, Xin,Ma, Mingchao,Guan, Dawei,Zhou, Jing,Cao, Fengming,Li, Li,Li, Jun,Jiang, Xin,Ma, Mingchao,Cao, Fengming,Li, Jun,Zhou, Baoku,Zhao, Baisuo.

[18]Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Ai, Chao,Liang, Guoqing,Sun, Jingwen,Wang, Xiubin,Zhou, Wei.

[19]Response of the soil microbial community to imazethapyr application in a soybean field. Guo, Liqun,Dong, Fengshou,Liu, Xingang,Wu, Xiaohu,Sheng, Yu,Zhang, Ying,Zheng, Yongquan. 2013

[20]Accumulation and Distribution of Cadmium in Flue-Cured Tobacco and Its Impact on Rhizosphere Microbial Community. Gao, Lin,Shen, Guoming,Zhang, Jiguang. 2015

作者其他论文 更多>>