VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance

文献类型: 外文期刊

第一作者: Dong, Chang

作者: Dong, Chang;Zhang, Zhen;Ren, Junpeng;Huang, Jinfeng;Cai, Binhua;Tao, Jianmin;Dong, Chang;Qin, Yang;Wang, Bailin;Lu, Huiling

作者机构:

关键词: CBF1;Vitis amurensis;Cold acclimation;Cold tolerance

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: To understand cold acclimation and cold tolerance in Vitis, we isolated a C-repeat binding factor 1 (CBF1) transcriptional activator from cold-sensitive Vitis vinifera ‘Manicure Finger’ and cold-tolerant wild Vitis amurensis. Under cold stress, theCBF1 transcript accumulation of V. amurensis increased, whereas that of V. vinifera showed no significant change. The transcript levels of VaCBF1 in the roots, stems, leaves, and petioles under cold stress were up-regulated in a time-dependent manner. The transcript level of VaCBF1 in the leaves was induced by salinity stress or by exogenous abscisic acid and salicylic acid. The presence of the cis-elements MBS, MYB, and MYC in the VaCBF1 promoter suggests that this promoter is a component of the CBF transduction pathway, which is involved in plant response to cold stress. The overexpression of VaCBF1 increased the cold tolerance of transgenic tobacco at -4 °C. The transcript level of the downstream target gene NtERD10D appeared in the transgenic lines under normal conditions, whereas that of NtERD10D and NtDREB3 improved under low temperature. We suggest that VaCBF1 enhances stress tolerance by increasing antioxidant activities and promoting downstream target gene expression.

分类号: Q94

  • 相关文献

[1]Stress-responsive gene ICE1 from Vitis amurensis increases cold tolerance in tobacco. Dong, Chang,Zhang, Zhen,Ren, Junpeng,Huang, Jinfeng,Wang, Yan,Cai, Binhua,Tao, Jianmin,Dong, Chang,Qin, Yang,Wang, Bailin. 2013

[2]Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1. Li, RF,Wei, JH,Wang, HZ,He, J,Sun, ZY. 2006

[3]Characterisation of seed oils from different grape cultivars grown in China. Wen, Xin,Zhu, Minghui,Chen, Ziye,Li, Jingming,Ni, Yuanying,Wen, Xin,Zhu, Minghui,Ni, Yuanying,Wen, Xin,Zhu, Minghui,Ni, Yuanying,Hu, Rui,Zhao, Jinhong.

[4]Proteomic Analysis of the Resistant Responses of Two Vitis amurensis Cultivars to Plasmopara viticola Infections. Xu, Pei-lei,Liu, Ying-xue,Qin, Hong-yan,Ai, Jun,Fan, Shu-tian,Yang, Yi-ming,Zhao, Ying,Li, Xiao-yan,Li, Xiao-hong.

[5]Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine. Wu, Jiao,Yin, Ling,Zhang, Yali,Lu, Jiang,Qu, Junjie.

[6]Expression and regulation of a cold-responsive gene, CsCBF in Citrus sinensis (L.) Osbeck under low temperature, high salinity and abscisic acid. He, L. G.,Jiang, Y. C.,Wang, H. L.,Xu, M.,Sun, Z. H.. 2016

[7]Differentially expressed genes under cold acclimation in Physcomitrella patens. Sun, Ming-Ming,Li, Lin-Hui,Xie, Hua,Ma, Rong-Cai,He, Yi-Kun. 2007

[8]Global transcriptome profiles of Camellia sinensis during cold acclimation. Wang, Xin-Chao,Ma, Chun-Lei,Cao, Hong-Li,Yue, Chuan,Hao, Xin-Yuan,Chen, Liang,Ma, Jian-Qiang,Jin, Ji-Qiang,Yang, Ya-Jun,Wang, Xin-Chao,Ma, Chun-Lei,Cao, Hong-Li,Yue, Chuan,Hao, Xin-Yuan,Chen, Liang,Ma, Jian-Qiang,Jin, Ji-Qiang,Yang, Ya-Jun,Zhao, Qiong-Yi,Yue, Chuan,Li, Xuan,Zhao, Qiong-Yi,Zhang, Zong-Hong. 2013

[9]Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Yue, Chuan,Cao, Hong-Li,Wang, Lu,Zhou, Yan-Hua,Huang, Yu-Ting,Hao, Xin-Yuan,Wang, Yu-Chun,Wang, Bo,Yang, Ya-Jun,Wang, Xin-Chao,Yue, Chuan,Cao, Hong-Li,Wang, Lu,Zhou, Yan-Hua,Huang, Yu-Ting,Hao, Xin-Yuan,Wang, Yu-Chun,Wang, Bo,Yang, Ya-Jun,Wang, Xin-Chao,Wang, Lu,Hao, Xin-Yuan,Wang, Yu-Chun,Wang, Bo,Yang, Ya-Jun,Wang, Xin-Chao.

[10]Autumn dormancy regulates the expression of cas18, vsp and corF genes during cold acclimation of lucerne (Medicago sativa L.). Liu, Zhi-ying,Liu, Zhi-ying,Li, Xi-liang,Yan, Ya-fei,Gao, Run,Sun, Qi-zhong,Wang, Zong-li,Yang, Guo-feng,Sun, Juan,Wang, Zong-li.

[11]Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. Chen, Jing,Han, Guiqing,Han, Guiqing,Shang, Chen,Li, Jikai,Zhang, Hailing,Liu, Fengqi,Wang, Jianli,Liu, Huiying,Zhang, Yuexue. 2015

[12]Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. Wu, Zhi-Gang,Jiang, Wu,Chen, Song-Lin,Tao, Zheng-Ming,Jiang, Cheng-Xi,Chen, Song-Lin,Mantri, Nitin. 2016

[13]Changes in membrane-associated H+-ATPase activities and amounts in young grape plants during the cross adaptation to temperature stresses. Zhang, JH,Liu, YP,Pan, QH,Zhan, JC,Wang, XQ,Huang, WD.

[14]Metabolite profiling of tea (Camellia sinensis L.) leaves in winter. Shen, Jiazhi,Wang, Yu,Ding, Zhaotang,Hu, Jianhui,Zheng, Chao,Li, Yuchen,Chen, Changsong,Shen, Jiazhi,Wang, Yu,Ding, Zhaotang,Hu, Jianhui,Zheng, Chao,Li, Yuchen.

[15]Characterization and identification of cold tolerant near-isogenic lines in rice. Zhou, Lei,Hu, Guanglong,Pan, Yinghua,Zhang, Hongliang,Li, Jinjie,Li, Zichao,Zhou, Lei,Hu, Guanglong,Pan, Yinghua,Zhang, Hongliang,Li, Jinjie,Li, Zichao,Zeng, Yawen,Yang, Shuming,Zhou, Lei,You, Aiqing,Hu, Guanglong. 2012

[16]Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. Tang, Ning,Cao, Mengliang,Shen, Chunxiu,Que, Zhiqun,Cao, Mengliang,Li, Ding,He, Ronghua. 2017

[17]Seasonal changes in cold hardiness of Ophraella communa. Guo, Jian-Ying,Li, Min,Wan, Fang-Hao,Li, Min,Ai, Hong-Mu. 2011

[18]Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the field during winter in Qingdao. Zhang, Xiaoyan,Wan, Shuwei,Hao, Junjie,Yang, Tao,Zong, Xuxiao,Hu, Jinguo. 2016

[19]Selection of cold tolerant somaclonal variant from Citrus sinensis cv. Jincheng and genetic stability evaluation of its cold tolerance. Lin, DB,Yan, QS,Shen, DX. 1999

[20]Genetic parameters for cold tolerance and body weight of Chinese fleshy prawn, Fenneropenaeus chinensis. Li Wenjia,Luan Sheng,Luo Kun,Sui Juan,Lu Xia,Wang Qingyin,Kong Jie,Li Wenjia,Luan Sheng,Luo Kun,Sui Juan,Lu Xia,Wang Qingyin,Kong Jie. 2016

作者其他论文 更多>>