Spatial-temporal analysis of zinc homeostasis reveals the response mechanisms to acute zinc deficiency in Sorghum bicolor

文献类型: 外文期刊

第一作者: Li, Yulong

作者: Li, Yulong;Zhang, Yuan;Liu, Xiaojing;Ge, Qing;Xu, Jin;Zhang, Yuan;Shi, Dongqing;Xu, Longhua;Xu, Jin;Zhang, Yuan;Xu, Jin;Qin, Jun;Pan, Xiangliang;Li, Wei;Zhu, Yiyong

作者机构:

关键词: carbonic anhydrase (CA);copper/zinc superoxide dismutase (CSD);microRNA;Sorghum bicolor;zinc (Zn) deficiency

期刊名称:NEW PHYTOLOGIST ( 影响因子:10.151; 五年影响因子:10.475 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Zinc (Zn) is an essential micronutrient in plants. The activity of copper/zinc superoxide dismutase (CSD) and carbonic anhydrase (CA) correlate with differences in Zn efficiency in plants; therefore, it is reasonable to hypothesize the existence of aZn economy model that saves Zn for these essential Zn proteins during Zn deficiency. However, up to this point, direct evidence for the idea that CSD and/or CA might be priorities for Zn delivery has been lacking. Here, we investigated the spatial-temporal effects of acute Zn depletion and resupply by integrating physiological studies and molecular analyses using hydroponically grown Sorghum. The elevated expression of miR398 repressed CSD expression in roots, whereas the reduced expression of miR528 resulted in a relatively stable level of CSD expression in Sorghum leaves under Zn depletion. Spatial-temporal analysis after Zn resupply to previously depleted plants revealed that the expression and activity of CA were the first to recover after Zn addition, whereas the recovery of the activities of CSD and alcohol dehydrogenase (ADH) was delayed, suggesting that CA receives priority in Zn delivery over CSD and ADH. Our results also indicate that microRNAs (miRNAs) are important regulators of the response of Zn deficiency in plants.

分类号: Q94

  • 相关文献

[1]Physiological characteristics of the primitive CO(2) concentrating mechanism in PEPC transgenic rice. Jiao, DM,Kuang, TY,Li, X,Ge, QY,Huang, XQ,Hao, NB,Bai, KZ. 2003

[2]Genetic diversity in Chinese sorghum landraces revealed by chloroplast simple sequence repeats. Li, Ruyu,Zhang, Chunqing,Li, Ruyu,Zhang, Han,Guan, Yanan,Yao, Fengxia,Song, Guoan,Wang, Jiancheng,Zhou, Xincheng.

[3]QTL mapping of bio-energy related traits in Sorghum. Guan, Yan-an,Wang, Hong-gang,Guan, Yan-an,Qin, Ling,Zhang, Hua-wen,Yang, Yan-bing,Li, Ru-yu,Gao, Feng-ju. 2011

[4]Genetic contribution of Chinese landraces to the development of sorghum hybrids. Li, Y,Li, CZ. 1998

[5]Identification of a New Race of Sporisorium reilianum and Characterization of the Reaction of Sorghum Lines to Four Races of the Head Smut Pathogen. Zhang, Fuyao,Ping, Junai,Du, Zhihong,Cheng, Qingjun,Zhang, Fuyao,Huang, Yinghua,Zhang, Fuyao,Huang, Yinghua. 2011

[6]Construction of a high-density genetic map using specific-locus amplified fragments in sorghum. Ji, Guisu,Du, Ruiheng,Lv, Peng,Ma, Xue,Li, Suying,Hou, Shenglin,Han, Yucui,Liu, Guoqing,Zhang, Qingjiang,Fan, Shu. 2017

[7]Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. Wolabu, Tezera W.,Zhang, Fei,Niu, Lifang,Kalve, Shweta,Tadege, Million,Niu, Lifang,Bhatnagar-Mathur, Pooja,Muszynski, Michael G..

[8]Cadmium stress inhibits the growth of primary roots by interfering auxin homeostasis in Sorghum bicolor seedlings. Zhan, Yi-hua,Yu, Chen-liang,Zhang, Cheng-hao,Zheng, Qiu-xun,Yu, Chen-liang,Huang, Zong-an. 2017

[9]High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp pekinensis). Wang, Fengde,Li, Libin,Liu, Lifeng,Li, Huayin,Zhang, Yihui,Gao, Jianwei,Yao, Yingyin,Ni, Zhongfu. 2012

[10]Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Sun, Wei,wu, Xiu,Xie, Xianzhi,Xu, Xiao Hui,Lu, Xingbo,Sun, Hongwei,Wang, Yong. 2015

[11]Identification of Splice Variants, Targeted MicroRNAs and Functional Single Nucleotide Polymorphisms of the BOLA-DQA2 Gene in Dairy Cattle. Hou, Qinlei,Huang, Jinming,Ju, Zhihua,Li, Qiuling,Li, Liming,Wang, Changfa,Sun, Tao,Wang, Lingling,Hou, Minghai,Zhong, Jifeng,Hang, Suqin.

[12]Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein Cattle. Huang, Jinming,Ju, Zhihua,Li, Qiuling,Hou, Qinlei,Wang, Changfa,Li, Jianbin,Li, Rongling,Wang, Lingling,Sun, Tao,Hang, Suqin,Gao, Yundong,Hou, Minghai,Zhong, Jifeng.

[13]Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Zujun Yin,Yan Li,Jiwen Yu,Yudong Liu,Chunhe Li,Xiulan Han,Fafu Shen.

[14]Virus-Based MicroRNA Silencing and Overexpressing in Common Wheat (Triticum aestivum L.). Jian, Chao,Chi, Qing,Wang, Shijuan,Ma, Meng,Liu, Xiangli,Zhao, Huixian,Han, Ran,Zhao, Huixian. 2017

[15]Integrated mRNA and microRNA transcriptome variations in the multi-tepal mutant provide insights into the floral patterning of the orchid Cymbidium goeringii. Yang, Fengxi,Zhu, Genfa,Wang, Zhen,Liu, Hailin,Huang, Dan,Zhao, Chaoyi,Xu, Qingquan. 2017

[16]Gene screening and differential expression analysis of microRNAs in the middle silk gland of wild-type and naked pupa mutant silkworms (Bombyx mori). Qian, Ping,Wang, Xin,Jiang, Tao,Song, Fei,Chen, Chen,Fan, Yangyang,Shen, Xingjia,Qian, Ping,Shen, Xingjia. 2016

[17]Genome-wide sequencing of small RNAs reveals a tissue-specific loss of conserved microRNA families in Echinococcus granulosus. Bai, Yun,Jin, Lei,Kang, Hui,Zhu, Yongqiang,Zhang, Lu,Li, Xia,Ma, Fengshou,Wang, Shengyue,Zhang, Zhuangzhi,Zhao, Li,Shi, Baoxin,Li, Jun,Zhang, Wenbao,McManus, Donald P.. 2014

[18]A comprehensive microRNA expression profile of the backfat tissue from castrated and intact full-sib pair male pigs. Bai, Ying,Huang, Jin-Ming,Liu, Gang,Zhang, Ji-Bin,Liu, Cheng-Kun,Fang, Mei-Ying,Huang, Jin-Ming,Wang, Jian-Ying. 2014

[19]The role of miR319a and its target gene TCP4 in the regulation of pistil development in Prunus mume. Wang, Wanxu,Shi, Ting,Ni, Xiaopeng,Xu, Yanshuai,Qu, Shenchun,Gao, Zhihong,Wang, Wanxu. 2018

[20]Discovering conserved insect microRNAs from expressed sequence tags. Yu, Lun,Li, Fei,Lin, Kejian,Liang, Jingdong. 2010

作者其他论文 更多>>