Heritable variation and small RNAs in the progeny of chimeras of Brassica juncea and Brassica oleracea

文献类型: 外文期刊

第一作者: Li, Junxing

作者: Li, Junxing;Wang, Yan;Zhang, Langlang;Liu, Bin;Cao, Liwen;Qi, Zhenyu;Chen, Liping;Li, Junxing;Zhang, Langlang;Liu, Bin;Cao, Liwen;Chen, Liping;Wang, Yan;Qi, Zhenyu

作者机构:

关键词: Brassica juncea;Brassica oleracea;chimera;grafting variation;inheritance;small RNA

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Chimeras have been used to study the transmission of genetic material and the resulting genetic variation. In this study, two chimeras, TCC and TTC (where the origin of the outer, middle, and inner cell layers, respectively, of the shoot apical meristem is designated by a 'T' for tuber mustard and 'C' for red cabbage), as well as their asexual and sexual progeny, were used to analyse the mechanism and the inheritance of the variation induced by grafting. Asexual TCC progeny were obtained by adventitious shoot regeneration, while TTC sexual progeny were produced by self-crossing. This study observed similar morphological variations in both the asexual and sexual progeny, including changes in leaf shape and the pattern of shoot apical meristem termination. The leaf shape variation was stable, while the rate of shoot apical meristem termination in the TTC progenies decreased from 74.52% to 3.01% after three successive rounds of self-crossing. Specific red cabbage small RNAs were found in the asexually regenerated plants (rTTT) that were not present in TTT, indicating that small RNAs might be transmitted from red cabbage to tuber mustard during grafting. Moreover, in parallel with the variations in phenotype observed in the progeny, some conserved miRNAs were differentially expressed in rTTT and TTT, which correlated with changes in expression of their target genes. These results suggest that the change in small RNA expression induced by grafting may be an important factor for introducing graft-induced genetic variations, providing a basis for further investigating the mechanism of graft-induced genetic variation through epigenetics.

分类号: Q94

  • 相关文献

[1]Inheritance and InDel markers closely linked to petal color gene (cpc-1) in Brassica oleracea. Han, Feng-qing,Yang, Chong,Fang, Zhi-yuan,Yang, Li-mei,Zhuang, Mu,Lv, Hong-hao,Liu, Yu-mei,Li, Zhan-sheng,Liu, Bo,Yu, Hai-long,Liu, Xiao-ping,Zhang, Yang-yong.

[2]Genetics and fine mapping of a yellow-green leaf gene (ygl-1) in cabbage (Brassica oleracea var. capitata L.). Liu, Xiao-ping,Yang, Chong,Han, Feng-qing,Fang, Zhi-yuan,Yang, Li-mei,Zhuang, Mu,Lv, Hong-hao,Liu, Yu-mei,Li, Zhan-sheng,Zhang, Yang-yong,Yang, Chong.

[3]Generation of chimeric minipigs by aggregating 4-to 8-cell-stage blastomeres from somatic cell nuclear transfer with the tracing of enhanced green fluorescent protein. Ji, Huili,Long, Chuan,Feng, Chong,Shi, Ningning,Jiang, Yingdi,Zeng, Guomin,Li, Xirui,Wu, Jingjing,Pan, Dengke,Ji, Huili,Lu, Shengsheng,Long, Chuan,Lu, Lin. 2017

[4]Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene. Zhang, Junjie,Liu, Fan,Yao, Lei,Yin, Yue,Wang, Guixiang,Zhang, Junjie,Huang, Yubi,Luo, Chen. 2012

[5]Gene transfer strategy for kiwifruit to obtain pure transgenic plant through inducing adventitious roots in leaf explants with Agrobacterium tumefaciens. Li, M,Huang, ZG,Han, LX,Zhao, GR,Li, YH. 2003

[6]Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera). Chen, Rui,Wang, Zhe,Chen, Jing,Qiao, Ge-Xia,Chen, Rui,Wang, Zhe. 2015

[7]Generation of chimeric piglets by injection of embryonic germ cells from inbred Wuzhishan miniature pigs into blastocysts. Dong, Xiao,Mu, Yulian,Liu, Lixin,Chen, Hongping,Zhang, Li,Feng, Shutang,Dong, Xiao,Tsung, Hsiaochien,Mu, Yulian,Feng, Shutang,Wang, Hongjun. 2014

[8]Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors. Du, Xuguang,Feng, Tao,Yu, Dawei,Zou, Huiying,Ma, Shuangyu,Hu, Xiaoxiang,Li, Ning,Wu, Sen,Wu, Yuanyuan,Feng, Chong,Pan, Dengke,Huang, Yongye,Ouyang, Hongsheng.

[9]Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. Meng, De Kun,Yang, Zhi Min,Chen, Jian. 2011

[10]Cytogenetics and germplasm enrichment in Brassica allopolyploids in China. Li Zai-yun,Wang You-ping,Wang You-ping. 2017

[11]Valuable New Resistances Ensure Improved Management of Sclerotinia Stem Rot (Sclerotinia sclerotiorum) in Horticultural and Oilseed Brassica Species. You, Ming Pei,Uloth, Margaret B.,Barbetti, Martin J.,You, Ming Pei,Uloth, Margaret B.,Barbetti, Martin J.,You, Ming Pei,Barbetti, Martin J.,Li, Xi Xiang,Banga, Surinder S.,Banga, Shashi K..

[12]The protein J3 regulates flowering through directly interacting with the promoter of SOC1 in Brassica juncea. Zhou, Wenwen,Wei, Dayong,Jiang, Wei,Wang, Zhimin,Tang, Qinglin,Wang, Hebing,Zhou, Wenwen,Wei, Dayong,Jiang, Wei,Wang, Zhimin,Tang, Qinglin. 2018

[13]Genetic diversity in oil and vegetable mustard (Brassica juncea) landraces revealed by SRAP markers. Wu, Xiao-ming,Song, Yunchun,Wu, Xiao-ming,Chen, Bi-yun,Lu, Guangyuan,Wang, Han-zhong,Xu, Kun,Gao Guizhan.

[14]IDENTITIES AND RELATIONSHIPS AMONG CHINESE VEGETABLE BRASSICAS AS DETERMINED BY RANDOM AMPLIFIED POLYMORPHIC DNA MARKERS. REN, JP,MCFERSON, JR,LI, RG,KRESOVICH, S,LAMBOY, WF.

[15]New host resistances in Brassica napus and Brassica juncea from Australia, China and India: Key to managing Sclerotinia stem rot (Sclerotinia sclerotiorum) without fungicides. Barbetti, M. J.,Li, C. X.,You, M. P.,Barbetti, M. J.,You, M. P.,Banga, S. S.,Banga, S. K.,Sandhu, P. S.,Singh, D.,Singh, R.,Liu, S. Y..

[16]Genetic and physical fine mapping of a multilocular gene Bjln1 in Brassica juncea to a 208-kb region. Xiao, Lu,Zhao, Huiyan,Zhao, Zhi,Du, Dezhi,Xu, Liang,Yao, Yanmei,Zhao, Zhigang,Xing, Xiaorong,Shang, Guoxia,Zhao, Hongchao.

[17]Identification of Hop stunt viroid infecting Citrus limon in China using small RNAs deep sequencing approach. Fu, Shuai,Qian, Yajuan,Xu, Yi,Zhou, Xueping,Zhou, Xueping. 2015

[18]Identification of Drought-Responsive MicroRNAs from Roots and Leaves of Alfalfa by High-Throughput Sequencing. Li, Yue,Wan, Liqiang,Bi, Shuyi,Wan, Xiufu,Li, Zhenyi,Cao, Jing,Tong, Zongyong,Xu, Hongyu,He, Feng,Li, Xianglin. 2017

[19]Mutation of the RDR1 gene caused genome-wide changes in gene expression, regional variation in small RNA clusters and localized alteration in DNA methylation in rice. Wang, Ningning,Zhang, Di,Wang, Zhenhui,Xun, Hongwei,Wang, Hui,Huang, Wei,Liu, Ying,Li, Ning,Ou, Xiufang,Zhang, Chunyu,Liu, Bao,Wang, Ningning,Ma, Jian,Lin, Xiuyun,Zhang, Chunyu,Wang, Ningning,Wang, Ming-Bo. 2014

[20]Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection. Qiao, Yongli,Shi, Jinxia,Zhai, Yi,Hou, Yingnan,Ma, Wenbo,Qiao, Yongli,Shi, Jinxia,Hou, Yingnan,Ma, Wenbo,Qiao, Yongli.

作者其他论文 更多>>