Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA

文献类型: 外文期刊

第一作者: Zhang, Hua

作者: Zhang, Hua;Duan, Lian;Dai, Ji-Song;Zhu, Ying;Duan, Lian;Dai, Ji-Song;Zhang, Chang-Quan;Li, Juan;Gu, Ming-Hong;Liu, Qiao-Quan

作者机构:

期刊名称:THEORETICAL AND APPLIED GENETICS ( 影响因子:5.699; 五年影响因子:5.565 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Key message We discovered four QTLs that maintain proper rice amylose content at high temperature by increasing the splicing efficiency of Wx gene. Amylose content mainly controlled by Wx gene is a key physicochemical property for eating and cooking quality in rice. During the grain filling stage, high temperature can harm rice grain quality by significantly reducing the amylose content in many rice varieties. Here, we provide genetic evidences between Wx gene expression and rice amylose content at high temperature, and identified several quantitative trait loci (QTLs) in this pathway. We performed a genome-wide survey on a set of chromosome segment substitution lines (CSSLs) which carried chromosomal segments from the heat resistant indica 9311 in the heat-sensitive japonica Nipponbare background. Four QTLs, qHAC4, qHAC8a, qHAC8b and qHAC10, which can reduce the deleterious effects of amylose content at high temperature, were identified and mapped to chromosome 4, 8, 8 and 10, respectively. The major QTL qHAC8a, with the highest LOD score of 6.196, was physically mapped to a small chromosome segment (similar to 300 kb). The CSSLs carrying the qHAC8a, qHAC8b and/or qHAC4 from 9311 have the high pre-mRNA splicing efficiency of Wx gene and likely lead to stable amylose content at high temperature. Thus, increasing pre-mRNA processing efficiency of Wx gene could be an important regulation mechanism for maintaining stable amylose content in rice seeds at high temperature. In addition, our results provide a theoretical basis for breeding heat-stable grain in rice.

分类号: R394

  • 相关文献
作者其他论文 更多>>