Climate and crop yields impacted by ENSO episodes on the North China Plain: 1956-2006

文献类型: 外文期刊

第一作者: Liu, Yuan

作者: Liu, Yuan;Liu, Yuan;Liu, Yuan;Yang, Xiaoguang;Wang, Enli;Xue, Changying

作者机构:

关键词: ENSO;El Nino;La Nina;Crop yield;Climate change;North China Plain

期刊名称:REGIONAL ENVIRONMENTAL CHANGE ( 影响因子:3.678; 五年影响因子:4.135 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: El Nino-Southern Oscillation (ENSO) contributes to climate anomalies, especially those related to regional rainfall, which affect crop production. Although the North China Plain (NCP) is the most important agricultural production region in China, the impact of ENSO events on local climate and crop production has received only limited attention. Therefore, the impact of different phases of ENSO on local climate and production of winter wheat and summer maize, both rain fed and irrigated, was investigated at three sites using the agricultural production systems simulator model. Data on daily temperature, precipitation, and sunshine hours for 50 years (1956-2006) were analysed to build climate scenarios for three categories of ENSO: years with El Nino events, years with La Nina events, and neutral years. The pattern of climate change was generally similar across the three sites: annual precipitation decreased slightly and annual mean sunshine hours decreased significantly, whereas annual mean minimum temperature increased significantly, leading to a significant increase in mean air temperature. Precipitation decreased and temperature and sunshine hours increased in both El Nino and La Nina years but remained stable in neutral years. Under full irrigation, the probability of exceeding distribution that crop yield would be higher was not markedly affected (P > 0.05), although the yields in both El Nino and La Nina years differed markedly from those in neutral years, especially in maize. Under rain-fed conditions, the yield of maize was decreased greatly (P < 0.05), the probability distribution of such reduction being the highest in La Nina years at all the sites (P < 0.05). At the provincial level, yields from well-managed fields differed (P > 0.05) with the ENSO category: production of maize was more vulnerable than that of wheat in El Nino and La Nina years. El Nino and La Nina had similar effects on climatic variables across the NCP: low yields in El Nino and La Nina years due to lower precipitation and high yields in neutral years due to longer sunshine hours and additional irrigation.

分类号: X21

  • 相关文献

[1]Estimation of regional crop yield by assimilating multi-temporal TM images into crop growth model. Yang, Peng,Zhou, Qingbo,Chen, Zhongxin,Zha, Yan,Wu, Wenbin,Shibasaki, Ryosuke. 2006

[2]Relationships between drought disasters and crop production during ENSO episodes across the North China Plain. Liu, Yuan,Liu, Buchun,Yang, Xiaojuan,Bai, Wei,Wang, Jian,Liu, Yuan,Liu, Buchun,Yang, Xiaojuan,Bai, Wei,Wang, Jian,Wang, Jian.

[3]Variability in climatology and agricultural production in China in association with the East Asian summer monsoon and El Nino Southern Oscillation. Tao, FL,Yokozawa, M,Zhang, Z,Hayashi, Y,Grassl, H,Fu, CB.

[4]Projecting regional climate and cropland changes using a linked biogeophysical-socioeconomic modeling framework: 1. Model description and an equilibrium application over West Africa. Wang, Guiling,Ahmed, Kazi Farzan,Yu, Miao,Ji, Zhenming,You, Liangzhi,You, Liangzhi,Yu, Miao,Pal, Jeremy,Ji, Zhenming. 2017

[5]Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. He, Wentian,He, Ping,Zhou, Wei,He, Wentian,Yang, J. Y.,Drury, C. F.,Smith, W. N.,Grant, B. B.,Qian, B.,Hoogenboom, G.. 2018

[6]Climate Change Modelling and Its Roles to Chinese Crops Yield. Ju Hui,Lin Er-da,Jiang Shuai,Ju Hui,Lin Er-da,Wheeer, Tim,Challinor, Andrew. 2013

[7]Simulated impact of elevated CO2, temperature, and precipitation on the winter wheat yield in the North China Plain. Yang, Peng,Wu, Wenbin,Li, Zhengguo,Yu, Qiangyi,Liu, Zhenhuan,Tang, Pengqin,Zha, Yan,Tang, Huajun,Yang, Peng,Kimoto, Masahide,Inatsu, Masaru. 2014

[8]Climate change in Asia: A review of the vulnerability and adaptation of crop production. Iglesias, A,Erda, L,Rosenzweig, C. 1996

[9]Mapping drought status of winter wheat from MODIS data in North China Plain. Gao, Lei,Qin, Zhihao,Lu, Liping,Pei, Huan,Qin, Zhihao,Xu, Bin. 2007

[10]Evaluation of a New Nutrient Management Method in Green House Gas Emission Reduction for Winter Wheat in the North China Plain. Sun, Yan-ming,Jia, Liang-liang,Han, Bao-wen,Liu, Meng-chao. 2014

[11]Role of crop residue management in sustainable agricultural development in the North China Plain. Wu, Wenliang,Zhang, Qingzhong,Yang, Zhengli. 2008

[12]Fate of labeled urea-N-15 as basal and topdressing applications in an irrigated wheat-maize rotation system in North China plain: II summer maize. Yang, Yunma,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Yang, Yunma,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Yang, Yunma,Jia, Shulong,Meng, Chunxiang,Sun, Yanming,Grant, Cynthia.

[13]Impact of climate warming on drought characteristics of summer maize in North China Plain for 1961-2010. Hu, Yanan,Li, Zhengguo,Liu, Yingjie. 2014

[14]SPEIPM-based research on drought impact on maize yield in North China Plain. Ming Bo,Guo Yin-qiao,Liu Guang-zhou,Li Shao-kun,Ming Bo,Tao Hong-bin,Wang Pu. 2015

[15]The causes and impacts for heat stress in spring maize during grain filling in the North China Plain - A review. Tao Zhi-qiang,Chen Yuan-quan,Zou Juan-xiu,Yan Peng,Yuan Shu-fen,Wu Xia,Sui Peng,Tao Zhi-qiang,Li Chao. 2016

[16]Applicability of an Agro-hydrological Model (SMCR_N) in Simulating the Yield and Nitrate Dynamics of Eggplant in North China Plain. Dong, Yiwei,Li, Qiaozhen,Fang, Fuli,Li, Yuzhong,Xu, Chunying,Dong, Yiwei,Zhu, Dazhou. 2012

[17]Fate of N-15-labeled urea under a winter wheat-summer maize rotation on the North China Plain. Ju Xiao-Tang,Liu Xue-Jun,Pan Jia-Rong,Zhang Fu-Suo. 2007

[18]Fate of labeled urea-N-15 as basal and topdressing applications in an irrigated wheat-maize rotation system in North China Plain: I winter wheat. Jia, Shulong,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Jia, Shulong,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Jia, Shulong,Yang, Yunma,Meng, Chunxiang,Sun, Yanming,Grant, Cynthia.

[19]Relationship between soil inorganic carbon and organic carbon in the wheat-maize cropland of the North China Plain. Shi, H. J.,Wang, X. J.,Li, D. W.,Guo, Y.,Zhao, Y. J.,Xu, M. G..

[20]Accuracy of root modeling and its potential impact on simulation of grain yield of wheat. Zhao, Zhigan,Xue, Lihua,Wu, Yongcheng,Zhang, Jingting,Wang, Zhimin,Zhao, Zhigan,Wang, Enli,Xue, Lihua,Zhang, Jingting. 2013

作者其他论文 更多>>