Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance

文献类型: 外文期刊

第一作者: Yi, Xiaoping

作者: Yi, Xiaoping;Sun, Yong;Yang, Qian;Guo, Anping;Chang, Lili;Wang, Dan;Tong, Zheng;Jin, Xiang;Wang, Limin;Wang, Xuchu;Yi, Xiaoping;Guo, Anping;Chang, Lili;Wang, Xuchu;Yu, Jianlan;Jin, Wenhai

作者机构:

关键词: Halophyte;Ion transportation;Quantitative proteomics;Sesuvium portulacastrum;Sugar accumulation;Vacuolar ATPase

期刊名称:JOURNAL OF PROTEOMICS ( 影响因子:4.044; 五年影响因子:4.02 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Physiological and proteomic responses of Sesuvium portulacastrum leaves under salinity were investigated. Different from glycophytes, this halophyte had optimal growth at 200-300mM NaCl and accumulated more starch grains in chloroplasts under high salinity. Increased contents of soluble sugars, proline, and Na+ were observed upon salinity. X-ray microanalysis revealed that Na+ was mainly compartmentalized into cell vacuole. Quantitative proteomics produced 96 salt responsive proteins, and the majority was chloroplast-located proteins. Gene ontology analysis revealed that proteins involved in ion binding, proton transport, photosynthesis and ATP synthesis were overrepresented. The expressions of a Na+/H+ antiporter and several ATP synthase subunits were activated upon high salinity. ATP hydrolysis assay demonstrated that V-ATPase activity at tonoplast was dramatically increased upon NaCl whereas vacuolar H+-pyrophosphatase and plasma membrane P-ATPase activities were not increased, which indicated that sodium compartmentalization was mainly performed by enhancing V-ATPase activity rather than P-ATPase and H+-pyrophosphatase. Accumulation of soluble sugars as well as sodium compartmentalization maintained the osmotic balance between vacuole and cytoplasm, which finally established ionic homeostasis in saline cells in true halophytes. Biological significance: Physiological and proteomic analyses of S. portulacastrum leaves under different salinities were investigated. This true halophyte accumulated more soluble sugars, starch, proline and Na+ under high salinity. Differential proteomics produced 96 salt responsive proteins and the majority was involved in ion binding, proton transport, photosynthesis, and ATP synthesis. A Na+/H+ antiporter and several ATP synthase subunits were induced upon high salinity. ATP hydrolysis assay demonstrated that V-ATPase activity at tonoplast was dramatically increased whereas vacuolar H+-pyrophosphatase and plasma membrane ATPase activities were stable upon NaCl. These findings demonstrated that the increased Na+ was compartmentalized into vacuole by enhancing V-ATPase activity rather than H+-ATPase.

分类号: Q51

  • 相关文献

[1]Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Wang, Dongyang,Wang, Haiyan,Han, Bing,Wang, Bin,Guo, Anping,Liu, Chongjing,Chang, Lili,Peng, Ming,Wang, Xuchu,Wang, Dongyang,Wang, Haiyan,Han, Bing,Wang, Bin,Liu, Chongjing,Wang, Xuchu,Zheng, Dong.

[2]Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica. Sh, Ying-wu,Lou, Kai,Li, Chun,Wang, Lei,Zhao, Zhen-yong,Zhao, Shuai,Tian, Chang-yan. 2015

[3]Illumina-Based Analysis of Endophytic and Rhizosphere Bacterial Diversity of the Coastal Halophyte &ITMesserschmidia sibirica&IT. Tian, Xue-Ying,Zhang, Cheng-Sheng. 2017

[4]The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-Based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila. Chang, Lili,Guo, Anping,Wang, Xuchu,Chang, Lili,Guo, Anping,Jin, Xiang,Yang, Qian,Wang, Dan,Sun, Yong,Huang, Qixing,Wang, Limin,Peng, Cunzhi,Wang, Xuchu.

[5]Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Fan, Wei,Zhang, Zhili,Zhang, Yanlin,Fan, Wei,Zhang, Yanlin,Zhang, Zhili. 2009

[6]Identification of up-regulated genes provides integrated insight into salt-induced tolerance mechanisms in Sesuvium portulacastrum roots. Fan, Wei,Fan, Wei,Chang, Wenjun,Liu, Xiwen,Zhang, Zhili,Zhang, Zhili,Xiao, Chuan,Yang, Jianli.

[7]SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. Yang, Chenglong,Zhou, Yang,Fan, Jie,Shen, Longbin,Yao, Yuan,Li, Ruimei,Fu, Shaoping,Duan, Ruijun,Guo, Jianchun,Yang, Chenglong,Zhou, Yang,Fan, Jie,Shen, Longbin,Yao, Yuan,Li, Ruimei,Fu, Shaoping,Duan, Ruijun,Guo, Jianchun,Yang, Chenglong,Fu, Yuhua,Zhou, Yang,Fan, Jie,Hu, Xinwen.

[8]An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. Chang, Wenjun,Liu, Xiwen,Zhu, Jiahong,Fan, Wei,Chang, Wenjun,Liu, Xiwen,Zhu, Jiahong,Fan, Wei,Zhang, Zhili.

[9]Cloning of Salt Tolerance-Related cDNAs from the Mangrove Plant Sesuvium portulacastrum L.. Zeng, Hui-Cai,Deng, Liu-Hong,Zhang, Chun-Fa.

[10]Sucrose Metabolism and Changes of Relative Enzymes in Mangifera indica L. 'Irwin'. Wei, Chang-bin,Wu, Hong-xia,Ma, Wei-hong,Wang, Song-biao,Sun, Guang-ming.

[11]Dynamic characteristics of enzymes and transcriptome related to sugar metabolism and accumulation in sweet and non-sweet watermelon fruits. Xu, Y.,Guo, S.,Liu, J.,He, H.,Zhang, H.,Ren, Y.,Sun, H.,Gong, G.,Fei, Z.,Zheng, Y.,Huang, M.,Zhong, S.,Liu, J.. 2012

[12]Pineapple Production and Research in China. Sun, G. M.. 2011

[13]DYNAMICS OF SUGAR-METABOLIC ENZYMES AND SUGARS ACCUMULATION DURING WATERMELON (CITRULLUS LANATUS) FRUIT DEVELOPMENT. Zhang, Huijun,Ge, Yu. 2016

[14]Fruit Photosynthesis and Assimilate Translocation and Partitioning: Their Characteristics and Role in Sugar Accumulation in Developing Citrus unshiu Fruit. Chen, JW,Zhang, SL,Zhang, LC,Zhao, ZZ,Xu, JG.

[15]Physico-chemical properties of longan fruit during development and ripening. Shi, Shengyou,Wang, Wei,Liu, Liqin,Shu, Bo,Wei, Yongzan,Jue, Dengwei,Xie, Jianghui,Wang, Wei,Fu, Jiaxin,Liu, Chengming.

[16]Quantitative proteomics by amino acid labeling in foot-and-mouth disease virus (FMDV)-infected cells. Ye, Yu,Xin, Chaoan,Liao, Ming,Fan, Huiying,Ye, Yu,Luo, Yongwen,Xin, Chaoan,Liao, Ming,Fan, Huiying,Ye, Yu,Xin, Chaoan,Liao, Ming,Fan, Huiying,Tong, Tiezhu,Yan, Guangrong,Yan, Guangrong,Liu, Xiangtao.

[17]Comparative analysis of primary hepatocellular carcinoma with single and multiple lesions by iTRAQ-based quantitative proteomics. Xing, Xiaohua,Huang, Yao,Chi, Minhui,Zeng, Yongyi,Chen, Lihong,Li, Ling,Zeng, Jinhua,Liu, Jingfeng,Xing, Xiaohua,Wang, Sen,Chi, Minhui,Zeng, Yongyi,Chen, Lihong,Li, Ling,Zeng, Jinhua,Liu, Minjie,Liu, Xiaolong,Liu, Jingfeng,Xing, Xiaohua,Wang, Sen,Chi, Minhui,Zeng, Yongyi,Chen, Lihong,Li, Ling,Zeng, Jinhua,Liu, Minjie,Liu, Xiaolong,Liu, Jingfeng,Han, Xiao.

[18]Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. Yang, Yongxin,Zheng, Nan,Zhao, Xiaowei,Zhang, Yangdong,Han, Rongwei,Ma, Lu,Zhao, Shengguo,Li, Songli,Guo, Tongjun,Wang, Jiaqi,Yang, Yongxin,Zhao, Xiaowei,Zheng, Nan,Zhang, Yangdong,Zhao, Shengguo,Li, Songli,Wang, Jiaqi,Han, Rongwei.

[19]Proteome Differences between Hepatitis B Virus Genotype-B- and Genotype-C-Induced Hepatocellular Carcinoma Revealed by iTRAQ-Based Quantitative Proteomics. Wei, Dahai,Zeng, Yongyi,Xing, Xiaohua,Liu, Hongzhi,Lin, Minjie,Liu, Xiaolong,Liu, Jingfeng,Wei, Dahai,Zeng, Yongyi,Xing, Xiaohua,Liu, Hongzhi,Lin, Minjie,Liu, Xiaolong,Liu, Jingfeng,Zeng, Yongyi,Liu, Jingfeng,Han, Xiao,Liu, Xiaolong,Liu, Jingfeng.

[20]Reveal the molecular signatures of hepatocellular carcinoma with different sizes by iTRAQ based quantitative proteomics. Wang, Yingchao,Liu, Hongzhi,Liang, Dong,Huang, Yao,Zeng, Yongyi,Xing, Xiaohua,Xia, Jiangbao,Lin, Minjie,Liao, Naishun,Liu, Xiaolong,Liu, Jingfeng,Wang, Yingchao,Liu, Hongzhi,Liang, Dong,Huang, Yao,Zeng, Yongyi,Xing, Xiaohua,Xia, Jiangbao,Lin, Minjie,Liao, Naishun,Liu, Xiaolong,Liu, Jingfeng,Liu, Hongzhi,Liang, Dong,Huang, Yao,Zeng, Yongyi,Liu, Jingfeng,Han, Xiao.

作者其他论文 更多>>