High-yield production of a chitinase from Aeromonas veronii B565 as a potential feed supplement for warm-water aquaculture

文献类型: 外文期刊

第一作者: Zhang, Yuting

作者: Zhang, Yuting;Zhou, Zhigang;Liu, Yuchun;Cao, Yanan;He, Suxu;Huo, Fengmin;Qin, Chubin;Yao, Bin;Ringo, Einar

作者机构:

关键词: Chitinase;Aeromonas sp;Overexpression;Feed supplements;Aquaculture

期刊名称:APPLIED MICROBIOLOGY AND BIOTECHNOLOGY ( 影响因子:4.813; 五年影响因子:4.697 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Chitin, present in crustacean shells, insects, and fungi, is the second most plentiful natural organic fiber after wood. To effectively use chitin in a cost-saving and environmentally friendly way in aquaculture, crustacean shells (e.g., shrimp-shell meal) are supplemented into aquafeed after degradation by chemical methods. Herein, we describe a chitinase from Aeromonas veronii B565, designated ChiB565, which potently degrades shrimp-shell chitin and resists proteolysis. We isolated recombinant ChiB565 of the expected molecular mass in large yield from Pichia pastoris. ChiB565 is optimally active at pH 5.0 and 50 °C and stable between pH 4.5 and 9.0 at 50 °C and below. Compared with the commercial chitinase C-6137, which cannot degrade shrimp-shell chitin, ChiB565 hydrolyzes shrimp-shell chitin in addition to colloidal chitin, powdered chitin, and β-1,3-1,4-glucan. The optimal enzyme concentration and reaction time for in vitro degradation of 0.1 g of powdered shrimp shell are 30 U of ChiB565 and 3 h, respectively. A synergistic protein-release effect occurred when ChiB565 and trypsin were incubated in vitro with shrimp shells. Tilapia were fed an experimental diet containing 5 % (w/w) shrimp bran and 16.2 U/kg ChiB565, which significantly improved growth and feed conversion compared with a control diet lacking ChiB565. Dietary ChiB565 enhanced nitrogen digestibility and downregulated intestinal IL-1β expression. The immunologically relevant protective effects of dietary ChiB565 were also observed for 2 to 3 days following exposure to pathogenic Aeromonas hydrophila.

分类号: Q939.9`Q81

  • 相关文献

[1]Assessment of the local environmental impact of intensive marine shellfish and seaweed farming-Application of the MOM system in the Sungo Bay, China. Zhang, Jihong,Fang, Jianguang,Wang, Wei,Jiang, Zengjie,Zhang, Jihong,Fang, Jianguang,Wang, Wei,Jiang, Zengjie,Hansen, Pia Kupka.

[2]Effects of sodium gluconate and phytase on performance and bone characteristics in broiler chickers. Guo, Yanli,Shi, Yanghong,Li, Fadi,Zhen, Chen,Hao, Zhengli,Chen, Jilan.

[3]Effect of epigallocatechin gallate on growth performance and antioxidant capacity in heat-stressed broilers. Xue, Bo,Liu, Longzhou,Luo, Jingxian,Tian, Guangming,Yang, Ye,Song, Jiao.

[4]Influence of dietary vitamin E supplementation on meat quality traits and gene expression related to lipid metabolism in the Beijing-you chicken. Li, W. J.,Zhao, G. P.,Chen, J. L.,Zheng, M. Q.,Wen, J..

[5]Proteomic and immunological identification of two new allergens from silkworm (Bombyx mori L.) pupae. Zhao, Xiangjie,Li, Lin,Li, Bing,Zhao, Xiangjie,Kuang, Zheshi,Luo, Guoqing,Zhao, Xiangjie. 2015

[6]Physiological Responses of Watermelon Grafted onto Bottle Gourd to Fusarium oxysporum f. sp niveum Infection. Zhang, M.,Yang, X. P.,Xu, J. H.,Liu, G.,Yao, X. F.,Li, P. F.. 2015

[7]Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi) gene and characterization of its protein. Fang, Ji-Chao,Cai, Ping-Zhong,Yan, Wen-Zhao,Wu, Jie,Guo, Hui-Fang. 2005

[8]Six chitinases from oriental river prawn Macrobrachium nipponense: cDNA characterization, classification and mRNA expression during post-embryonic development and moulting cycle. Zhang, Shiyong,Fu, Hongtuo,Jiang, Fengwei,Jin, Shubo,Jiang, Sufei,Xiong, Yiwei,Fu, Hongtuo,Sun, Shengming,Qiao, Hui,Zhang, Wenyi,Jin, Shubo,Gong, Yongsheng. 2014

[9]Overexpression of the mulberry latex gene MaMLX-Q1 enhances defense against Plutella xylostella in Arabidopsis thaliana. Liu, Yan,Ji, Dongfeng,Chen, Jine,Lin, Tianbao,Wei, Jia,Zhu, Yan,Lv, Zhiqiang. 2017

[10]Production of N-Acetyl-D-glucosamine from Mycelial Waste by a Combination of Bacterial Chitinases and an Insect N-Acetyl-D-glucosaminidase. Wang, Di,Liu, Tian,Yang, Qing,Zhu, Weixing,Wang, Di,Liu, Tian,Yang, Qing,Yang, Qing.

[11]Characterisation of Isaria fumosorosea isolates and their virulence toward the Diamondback Moth, Plutella xylostella. Xie, Meiqiong,Zhao, Rui,He, Yurong,Wang, Longjiang,Lu, Lihua.

[12]Application of osthol induces a resistance response against powdery mildew in pumpkin leaves. Shi, Zhiqi,Wang, Fei,Zhou, Wei,Zhang, Peng,Fan, Yong Jian. 2007

[13]Microbial Secondary Metabolite, Phlegmacin B-1, as a Novel Inhibitor of Insect Chitinolytic Enzymes. Liu, Tian,Duan, Yanwei,Yang, Qing,Chen, Lei,Liu, Tian,Duan, Yanwei,Yang, Qing,Liu, Tian,Yang, Qing,Lu, Xinhua.

[14]The deduced role of a chitinase containing two nonsynergistic catalytic domains. Zhu, Weixing,Wang, Jing,Zhou, Yong,Duan, Yanwei,Qu, Mingbo,Yang, Qing,Liu, Tian,Zhu, Weixing,Wang, Jing,Zhou, Yong,Duan, Yanwei,Qu, Mingbo,Yang, Qing,Yang, Qing. 2018

[15]Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC. in Tobacco Plants. Dong, Xuan,Zhao, Yichen,Ran, Xin,Guo, Linxia,Zhao, De-Gang,Dong, Xuan,Zhao, Yichen,Ran, Xin,Guo, Linxia,Zhao, De-Gang,Dong, Xuan,Ran, Xin,Guo, Linxia,Zhao, De-Gang,Zhao, Yichen,Zhao, De-Gang. 2017

[16]Microbial diversity in the sediment of a crab pond in Nanjing, China. Liu, Yuchun,Zhou, Zhigang,He, Suxu,Yao, Bin,Ringo, Einar. 2013

[17]Improving extracellular production of Serratia marcescens lytic polysaccharide monooxygenase CBP21 and Aeromonas veronii B565 chitinase Chi92 in Escherichia coli and their synergism. Yang, Yalin,Li, Juan,Liu, Xuewei,Pan, Xingliang,Hou, Junxiu,Ran, Chao,Zhou, Zhigang. 2017

[18]Molecular mechanism of BjCHI1-mediated plant defense against Botrytis cinerea infection. Gao, Ying,Zhao, Kaijun. 2017

[19]Characterization and expression analysis of a chitinase gene (PmChi-5) from black tiger shrimp (Penaeus monodon) under pathogens infection and ambient ammonia-N stress. Zhou, Falin,Zhou, Kaimin,Huang, Jianhua,Yang, Qibin,Jiang, Song,Qiu, Lihua,Yang, Lishi,Jiang, Shigui. 2018

[20]The expression of a baculovirus-derived chitinase gene increased resistance of tobacco cultivars to brown spot (Alternaria alternata). Shi, J,Thomas, CJ,King, LA,Hawes, CR,Possee, RD,Edwards, ML,Pallett, D,Cooper, JI. 2000

作者其他论文 更多>>