Infection processes of Ustilaginoidea virens during artificial inoculation of rice panicles

文献类型: 外文期刊

第一作者: Hu, Maolin

作者: Hu, Maolin;Luo, Laixin;Li, Jianqiang;Hu, Maolin;Luo, Laixin;Li, Jianqiang;Wang, Shu;Liu, Yongfeng

作者机构:

关键词: Ustilaginoidea virens;Artificial inoculation;Infection process;Rice panicles

期刊名称:EUROPEAN JOURNAL OF PLANT PATHOLOGY ( 影响因子:1.907; 五年影响因子:2.022 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ustilaginoidea virens is a ubiquitous plant pathogen that causes rice false smut disease, one of the most destructive diseases of rice (Oryza sativa L.) production. However, data concerning the effect of inoculation on disease development and the infection process of this pathogen are not comprehensive. In this study, the developmental processes of U. virens in rice panicles were characterized using an enhanced green fluorescent protein (EGFP) labelled strain. A mixture of hyphae and conidia of U. virens was used to inoculate rice panicles by leaf sheath injection during the booting stage of rice plants grown in a greenhouse. The panicles were assessed to determine the relationship between artificial inoculation and disease occurrence. Increasing volumes of inocula (0.2, 0.5, 1, and 2 ml of a mixture of hyphae-fragment and 2 x 10(6) conidia/ml suspension) caused more severe infections, and small differences were also observed for the different inoculation sites at the base, apex and mid-point of rice panicles. The optimum inoculation condition was 1-2 ml inoculum injected into the mid-point of rice panicles. Spikelet samples were collected as the disease progressed and observed by confocal laser scanning microscopy and scanning electron microscopy. The images collected showed that the primary site of U. virens colonization was at the base of the filaments with the inner spikelets becoming infected by hyphae at 24 h post inoculation (hpi). The accumulation of hyphae reached its highest level at 168 hpi, before the rice heading stage, as the infection extended upward from basal filaments to the anther apex, and then enclosed all the floral organs to produce a velvety smut ball.

分类号: S432.1

  • 相关文献

[1]Spread of recombinant Autographa californica nucleopolyhedrovirus in various tissues of silkworm Bombyx mori determined by real-time PCR. Zhang, Yi,Tian, Baozhong,Guo, Tingqing,Wang, Jianyang,Wei, Zhenguo,Lu, Changde,Zhang, Yi,Xia, Huanzhang,Tian, Baozhong,Wei, Zhenguo,Wang, Shengpeng.

[2]Process of Bipolaris sorghicola invasion of host cells. Peng, C.,Ge, T. T.,He, X. L.,Huang, Y. H.,Xu, Z. L.,Zhang, D. Y.,Shao, H. B.,Guo, S. W.. 2016

[3]Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Zheng, Lu,Huang, Junbin,Li, Guoqing,Li, Qili,Ning, Ping,Hsiang, Tom. 2012

[4]Histological observation of potato in response to Rhizoctonia solani infection. Zhang, Xiao Yu,Huo, Hong Li,Liu, Li Li,Yu, Zhuo,Xi, Xian Mei,Hao, Jianjun J..

[5]Inhibitory Action of Biofungicide Physcion on Initial and Secondary Infection of Magnaporthe oryzae. Wang, Na,Cai, Mengling,Wang, Xin,Xie, Yaqiong,Ni, Hanwen,Wang, Na.

[6]Infection Process of Burkholderia glumae Before Booting Stage of Rice. Li, Lu,Li, Qi-Qin,Huang, Shi-Wen,Li, Lu,Wang, Ling,Liu, Lian-Meng,Hou, Yu-Xuan,Huang, Shi-Wen.

[7]INFECTION OF GREEN FLUORESCENCE PROTEIN-TAGGED FUSARIUM GRAMINEARUM ON WHEAT AND BARLEY SPIKES. Lu, Wei-zhong,Ma, Hong-xiang,Van De Lee, Theo,Dufresne, Marie,Liu, Tai-guo,Yu, Da-zhao.

[8]Microscopic observations of strawberry plant colonization by a GFP-labelled strain of Fusarium oxysporum f. sp. fragariae. Yuan, Hongbo,Ling, Xitie,Liu, Tingli,Chen, Tianzi,Yang, Yuwen,Yao, Shu,Zhang, Baolong.

[9]Quantitative detection of the rice false smut pathogen Ustilaginoidea virens by real-time PCR. Li, H.,Ni, D. H.,Li, J.,Li, H.,Ni, D. H.,Duan, Y. B.,Li, J.,Song, F. S.,Li, L.,Wei, P. C.,Yang, J. B.,Li, H.,Wei, P. C.,Duan, Y. B.,Song, F. S.,Chen, Y.. 2013

[10]Bioactive Bis-naphtho-gamma-pyrones from Rice False Smut Pathogen Ustilaginoidea virens. Lu, Shiqiong,Sun, Weibo,Meng, Jiajia,Wang, Ali,Wang, Xiaohan,Tian, Jin,Fu, Xiaoxiang,Lai, Daowan,Zhou, Ligang,Dai, Jungui,Dai, Jungui,Liu, Yang.

[11]Preparative Separation of Main Ustilaginoidins from Rice False Smut Balls by High-Speed Counter-Current Chromatography. Sun, Weibo,Dong, Xuejiao,Xu, Dan,Meng, Jiajia,Fu, Xiaoxiang,Wang, Xiaohan,Lai, Daowan,Zhou, Ligang,Liu, Yang. 2016

[12]Main Ustilaginoidins and Their Distribution in Rice False Smut Balls. Meng, Jiajia,Sun, Weibo,Mao, Ziling,Xu, Dan,Wang, Xiaohan,Lu, Shiqiong,Lai, Daowan,Zhou, Ligang,Zhang, Guozhen,Liu, Yang. 2015

[13]Detection of quantitative resistance loci associated with resistance to rice false smut ( Ustilaginoidea virens) using introgression lines. Zhou, Y. -L.,Xie, X. -W.,Zhang, F.,Zhu, L. -H.,Xu, J. -L.,Gao, Y. -M.,Li, Z. -K.,Zhou, Y. -L.,Zhang, F.,Xu, J. -L.,Gao, Y. -M.,Li, Z. -K.,Wang, S.,Liu, X. -Z.. 2014

[14]Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties. Han, Yanqing,Zhang, Kang,Yang, Jun,Zhang, Nan,Fang, Anfei,Zhang, Yong,Sun, Wenxian,Han, Yanqing,Zhang, Kang,Yang, Jun,Zhang, Nan,Fang, Anfei,Zhang, Yong,Sun, Wenxian,Liu, Yongfeng,Chen, Zhiyi,Hsiang, Tom. 2015

[15]The role of Ustilaginoidea virens sclerotia in increasing incidence of rice false smut disease in the subtropical zone in China. Yong, Mingli,Deng, Qide,Fan, Linlin,Wang, Zhengyi,Hu, Dongwei,Miao, Jiankun,Wang, Shu,Bai, Yuanjun,Lai, Chaohui,Chen, Hongming,Yang, Xiujuan,Chen, Furu,Jin, Li,Yang, Binghui. 2018

[16]Epiphytic colonization of Ustilaginoidea virens on biotic and abiotic surfaces implies the widespread presence of primary inoculum for rice false smut disease. Guo, X. -Y.,Li, Y.,Li, L.,Xu, Y. -J.,Zhao, J. -Q.,Wang, W.,Guo, X. -Y.,Xiong, H.,Huang, F.,Liu, Y. -F.,Yu, J. -J..

[17]Development of a GFP-expressing Ustilaginoidea virens strain to study fungal invasion and colonization in rice spikelets. Andargie, Mebeaselassie,Li, Luoye,Li, Jianxiong,Feng, Aiqing,Zhu, Xiaoyuan.

[18]Comparative transcriptome analysis of fruiting body and sporulating mycelia of Villosiclava virens reveals genes with putative functions in sexual reproduction. Yu, Jun-Jie,Yu, Mi-Na,Nie, Ya-Feng,Yin, Xiao-Le,Zhao, Jie,Wang, Ya-Hui,Ding, Hui,Qi, Zhong-Qiang,Du, Yan,Liu, Yong-Feng,Sun, Wen-Xian,Sun, Wen-Xian,Huang, Li.

[19]Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Yu, Mina,Yu, Junjie,Hu, Jiankun,Huang, Lei,Wang, Yahui,Yin, Xiaole,Nie, Yafeng,Meng, Xiangkun,Wang, Weiduo,Liu, Yongfeng,Hu, Jiankun,Huang, Lei.

[20]The Contents of Ustiloxins A and B along with Their Distribution in Rice False Smut Balls. Wang, Xiaohan,Fu, Xiaoxiang,Lin, Fengke,Sun, Weibo,Meng, Jiajia,Wang, Ali,Lai, Daowan,Zhou, Ligang,Liu, Yang. 2016

作者其他论文 更多>>