PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation

文献类型: 外文期刊

第一作者: Yang, Zuoren

作者: Yang, Zuoren;Zhang, Chaojun;Yang, Xiaojie;Liu, Kun;Wu, Zhixia;Zhang, Xueyan;Zheng, Wu;Liu, Chuanliang;Lu, Lili;Yang, Zhaoen;Qian, Yuyuan;Xu, Zhenzhen;Li, Changfeng;Li, Fuguang;Xun, Qingqing;Li, Jia

作者机构:

关键词: activation tagging;brassinosteroid (BR);cotton (Gossypium hirsutum);fiber elongation;transcriptome

期刊名称:NEW PHYTOLOGIST ( 影响因子:10.151; 五年影响因子:10.475 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cotton (Gossypium hirsutum) is the major source of natural textile fibers. Brassinosteroids (BRs) play crucial roles in regulating fiber development. The molecular mechanisms of BRs in regulating fiber elongation, however, are poorly understood.pagoda1 (pag1) was identified via an activation tagging genetic screen and characterized by genome walking and brassinolide (BL) supplementation. RNA-Seq analysis was employed to elucidate the mechanisms of PAG1 in regulating fiber development.pag1 exhibited dwarfism and reduced fiber length due to significant inhibition of cell elongation and expansion. BL treatment rescued its growth and fiber elongation. PAG1 encodes a homolog of Arabidopsis CYP734A1 that inactivates BRs via C-26 hydroxylation. RNA-Seq analyses showed that the constitutive expression of PAG1 downregulated the expression of genes involved in very-long-chain fatty acids (VLCFA) biosynthesis, ethylene-mediated signaling, response to cadmium, cell wall development, cytoskeleton organization and cell growth.Our results demonstrate that PAG1 plays crucial roles in regulating fiber development via controlling the level of endogenous bioactive BRs, which may affect ethylene signaling cascade by mediating VLCFA. Therefore, BR may be a critical regulator of fiber elongation, a role which may in turn be linked to effects on VLCFA biosynthesis, ethylene and cadmium signaling, cell wall- and cytoskeleton-related gene expression.

分类号: Q94

  • 相关文献

[1]High-throughput generation of an activation-tagged mutant library for functional genomic analyses in tobacco. Liu, Feng,Zhang, Qian,Zhang, Zhiguo,Wu, Jinxia,Gong, Daping,Wang, Dawei,Cui, Mengmeng,Liu, Guanshan,Wang, Yuanying.

[2]Activation tagging, an efficient tool for functional analysis of the rice genome. Wan, Shuyan,Wu, Jinxia,Zhang, Zhiguo,Sun, Xuehui,Lv, Yaci,Gao, Ci,Ning, Yingda,Ma, Jun,Guo, Yupeng,Zhang, Qian,Zheng, Xia,Lu, Tiegang,Lv, Yaci,Gao, Ci,Ning, Yingda,Zhang, Caiying,Ma, Zhiying.

[3]Effects of fiber wax and cellulose content on colored cotton fiber quality. Zhaoe Pan,Donglei Sun,Junling Sun,Zhongli Zhou,Yinhua Jia,Baoyin Pang,Zhiying Ma,Xiongming Du.

[4]GhCaM7-like, a calcium sensor gene, influences cotton fiber elongation and biomass production. Cheng, Yuan,Lu, Lili,Yang, Zhaoen,Wu, Zhixia,Qin, Wenqiang,Yu, Daoqian,Ren, Zhongying,Li, Yi,Wang, Lingling,Li, Fuguang,Yang, Zuoren,Cheng, Yuan.

[5]Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in Ligon lintless-1 mutant. Jing Sun,Liangyu Yao,Kang Liu,Youlu Yuan.

[6]Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. Xihua Li,Yu, Jiwen,Yu, Shuxun,Zhang, Jinfa,Man Wu,Guoyuan Liu,Wenfeng Pei,Honghong Zhai,Jiwen Yu,Jinfa Zhang,Shuxun Yu. 2017

[7]The phosphorylation of an actin depolymerizing factor by a calcium-dependent protein kinase regulates cotton fiber elongation. Huang, Quan-Sheng,Chen, Xun-Ji,Li, Jian-Ping,Hao, Xiao-Yan,Chen, Guo,Zumuremu,Shao, Lin,Huang, Quan-Sheng,Chen, Xun-Ji,Li, Jian-Ping,Hao, Xiao-Yan,Chen, Guo,Zumuremu,Shao, Lin.

[8]Predicting the effects of environment and management on cotton fibre growth and quality: a functional-structural plant modelling approach. Xuejiao Wang,Lizhen Zhang,Jochem B. Evers,Lili Mao,Shoujun Wei,Xuebiao Pan,Xinhua Zhao,Wopke van der Werf,Zhaohu Li. 2014

[9]Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Haiyan Shi,Zhihao Liu,Li Zhu,Chaojun Zhang,Yun Chen,Ying Zhou,Fuguang Li,Xuebao Li. 2012

[10]GhVLN4 is involved in cell elongation via regulation of actin organization. Fenni Lv,Liu, Kang,Yuan, Youlu,Mingya Han,Dongdong Ge,Hui Dong,Xiaotong Zhang,Lifeng Li,Peipei Zhang,Zhongqi Zhang,Jing Sun,Kang Liu,Youlu Yuan.

[11]Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Kewei Zhang,Jiuling Song,Xiugui Chen,Tingting Yin,Changbin Liu,Kunpeng Li,Juren Zhang.

[12]Identification of genes associated with cotyledon senescence in upland cotton. SHEN Fafu,YU Shuxun,XIE Qingen,HAN Xiulan,FAN Shuli. 2006

[13]Cloning and Characterization of a Somatic Embryogenesis Receptor-Like Kinase Gene in Cotton (Gossypium hirsutum). Shi Ya-li,Zhang Rui,Wu Xiao-ping,Meng Zhi-gang,Guo San-dui. 2012

[14]The cotton beta-galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development. Qin, Li-Xia,Chen, Yun,Li, Yang,Gao, Lu,Li, Deng-Di,Xu, Wen-Liang,Li, Xue-Bao,Zeng, Wei,Qin, Li-Xia.

[15]Fine-mapping a fibre strength QTL QFS-D11-1 on cotton chromosome 21 using introgressed lines. Su, Chengfu,Yang, Liu,Li, Song,Wang, Wei,Pan, Qunbin,Qiu, Xinmian,Wang, Meixing.

[16]Isolation and characterization of a GAI/RGA-like gene from Gossypium hirsutum. Liao, Wen-bin,Ruan, Meng-bin,Cui, Bai-ming,Lu, Jia-ju,Peng, Ming,Xu, Nan-fei.

[17]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[18]Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Wang, Shufen,He, Qiwei,Liu, Xianxian,Xu, Wenling,Li, Libin,Gao, Jianwei,Wang, Fengde,Wang, Xiufeng. 2012

[19]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[20]Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. Xia, Han,Zhao, Chuanzhi,Hou, Lei,Li, Aiqin,Zhao, Shuzhen,Bi, Yuping,An, Jing,Wan, Shubo,Wang, Xingjun,Bi, Yuping,Wan, Shubo,Wang, Xingjun,Bi, Yuping,An, Jing,Zhao, Yanxiu,Wang, Xingjun. 2013

作者其他论文 更多>>