Quantitative trait loci analysis of soluble sugar contents in soybean

文献类型: 外文期刊

第一作者: Wang, Yueqiang

作者: Wang, Yueqiang;Chen, Pengyin;Zhang, Bo

作者机构:

关键词: soybean;sucrose;stachyose;raffinose;molecular marker;QTL mapping

期刊名称:PLANT BREEDING ( 影响因子:1.832; 五年影响因子:1.956 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The soluble sugar content in soybean seeds, mainly sucrose, stachyose, raffinose and trace amounts of glucose and fructose, is important for the increasing global market demand for various soyfoods including tofu, soymilk, natto, bean sprouts and edamame due to their nutritional value and health benefits. The objective of this study was to conduct quantitative trait loci (QTL) analysis and identify molecular markers for soluble sugar content in soybean seeds for marker-assisted selection (MAS) in soybean breeding. The content of the five previously mentioned sugars were measured and associated QTLs were mapped based on a F-2 population that was derived from a cross between V97-3000 and V99-5089. Eleven QTLs were detected for the five sugar contents: one for glucose, three each for fructose and sucrose, and two each for raffinose and stachyose. However, only one QTL for sucrose, one QTL for raffinose, and two QTLs for stachyose were identified with LOD > 3.0 and R-2 > 10% from this research. The QTL on chromosome 11 [linkage group (LG) B1] was identified as associated with sucrose, raffinose and stachyose in the same region as previously reported for sucrose and stachyose. The SSR marker, Satt359, on the QTL B1 region had an significant association with sucrose (LOD = 5.192; R-2 = 0.134), raffinose (LOD = 3.95; R-2 = 0.104), and stachyose (LOD = 13.572; R-2 = 0.314); therefore it can be used to assist breeding selection for sucrose, raffinose and stachyose contents simultaneously

分类号: S3

  • 相关文献

[1]Genome-wide identification of genes involved in raffinose metabolism in Maize. Zhou, Mei-Liang,Zhang, Qian,Zhou, Ming,Shao, Ji-Rong,Zhou, Mei-Liang,Sun, Zhan-Min,Tang, Yi-Xiong,Wu, Yan-Min,Zhu, Xue-Mei.

[2]Effects of Two Low Phytic Acid Mutations on Seed Quality and Nutritional Traits in Soybean (Glycine max L. Merr). Yuan, Feng-Jie,Shu, Qing-Yao,Yuan, Feng-Jie,Zhu, Dan-Hua,Fu, Xu-Tun,Dong, De-Kun,Zhu, Shen-Long,Li, Bai-Quan,Deng, Bo,Shu, Qing-Yao.

[3]Changes in carbohydrates and organic acids in leaves and mesocarp tissues during melon (Cucumis melo L.) fruit development. Fu, Q. S.,Zhang, X. Y.,Zhu, H. Q.,Lv, L. H.,Wang, H. S.. 2012

[4]High-Density Genetic Mapping Identifies New Major Loci for Tolerance to Low-Phosphorus Stress in Soybean. Zhang, Dan,Li, Hongyan,Chu, Shanshan,Lv, Haiyan,Wang, Jinshe,Zhang, Hengyou,Hu, Zhenbin,Yu, Deyue. 2016

[5]Sequencing of the chloroplast genomes of cytoplasmic male-sterile and male-fertile lines of soybean and identification of polymorphic markers. Lin, Chunjing,Dong, Yingshan,Lin, Chunjing,Zhang, Chunbao,Zhao, Hongkun,Xing, Shaochen,Wang, Yumin,Liu, Xiaodong,Yuan, Cuiping,Zhao, Limei,Dong, Yingshan,Zhang, Chunbao,Zhao, Limei,Dong, Yingshan.

[6]Effects of dietary raffinose on growth, non-specific immunity, intestinal morphology and microbiome of juvenile hybrid sturgeon (Acipenser baeri Brandt female x A. schrenckii Brandt male). Xu, Guanling,Xing, Wei,Li, Tieliang,Ma, Zhihong,Liu, Caixia,Jiang, Na,Luo, Lin. 2018

[7]Effects of Lysiphlebia japonica (Ashmead) on cotton-melon aphid Aphis gossypii Glover lipid synthesis. S. Zhang,J.-Y. Luo,L.-M. Lv,C.-Y. Wang,C.-H. Li,X.-Z. Zhu,J.-J. Cui.

[8]Sucrose and citric acid accumulations in melon genotypes with different sugar and acid contents. Tang, Mi,Zhang, Bao-cai,Xie, Jun-jun,Bie, Zhi-long,Wu, Ming-zhu,Yi, Hong-ping,Feng, Jong-xin,Tang, Mi. 2012

[9]A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.). Liu, Wei,Han, Xiangdong,Zhan, Ge,Zhao, Zhenfang,Wu, Cunxiang,Han, Xiangdong,Zhan, Ge,Zhao, Zhenfang,Feng, Yongjun. 2015

[10]MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Liu, Xiao-Juan,An, Xiu-Hong,Liu, Xin,Hu, Da-Gang,Wang, Xiao-Fei,You, Chun-Xiang,Hao, Yu-Jin,An, Xiu-Hong.

[11]Preparation of high-purity fructo-oligosaccharides by Aspergillus japonicus beta-fructofuranosidase and successive cultivation with yeast. Yang, Ya-Lin,Wang, Jian-Hua,Teng, Da,Zhang, Fan.

[12]Cloning, silencing, and prokaryotic expression of strawberry sucrose synthase gene FaSus1. Hua, L. N.,Zang, M.,Wang, S. F.,Shen, Y. Y.,Guo, J. X.,Li, Y. Z..

[13]Sucrose synthase FaSS1 plays an important role in the regulation of strawberry fruit ripening. Zhao, Cheng,Hua, Li-Na,Liu, Xiao-Feng,Shen, Yuan-Yue,Guo, Jia-Xuan,Li, Yu-Zhong.

[14]Synthesis of empty capsid-like particles of Asia I foot-and-mouth disease virus in insect cells and their immunogenicity in guinea pigs. Cao, Yimei,Lu, Zengjun,Sun, Jiachuan,Bai, Xingwen,Sun, Pu,Bao, Huifang,Chen, Yingli,Guo, Jianhong,Li, Dong,Liu, Xiangtao,Liu, Zaixin.

[15]Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Zhang, Chunhua,Shen, Zhijun,Ma, Ruijuan,Yu, Mingliang,Zhang, Yanping,Han, Jian,Korir, Nicholas Kibet.

[16]Exogenous sucrose treatment accelerates postharvest tomato fruit ripening through the influence on its metabolism and enhancing ethylene biosynthesis and signaling. Li, Dongdong,Mou, Wangshu,Li, Li,Mao, Linchun,Ying, Tiejin,Luo, Zisheng,Wang, Yansheng.

[17]Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.). Wu, Longmei,Ding, Yanfeng,Zhang, Jianwei,Cambula, Elidio D.,Weng, Fei,Liu, Zhenghui,Ding, Chengqiang,Tang, She,Chen, Lin,Wang, Shaohua,Li, Ganghua,Wu, Longmei,Ding, Yanfeng,Zhang, Jianwei,Cambula, Elidio D.,Weng, Fei,Liu, Zhenghui,Ding, Chengqiang,Tang, She,Chen, Lin,Wang, Shaohua,Li, Ganghua,Wu, Longmei,Ding, Yanfeng,Zhang, Jianwei,Cambula, Elidio D.,Weng, Fei,Liu, Zhenghui,Ding, Chengqiang,Tang, She,Chen, Lin,Wang, Shaohua,Li, Ganghua,Zhang, Wujun. 2017

[18]Rheological properties of waxy maize starch and xanthan gum mixtures in the presence of sucrose. Wang, Bao,Li, Dong,Mao, Zhi-Huai,Wang, Li-Jun,Ozkan, Necad,Li, Shu-Jun.

[19]Using Movable Light-emitting Diodes for Electricity Savings in a Plant Factory Growing Lettuce. Lil, Kun,Yang, Qi-Chang,Tong, Yu-Xin,Cheng, Ruifeng,Lil, Kun,Yang, Qi-Chang,Tong, Yu-Xin,Cheng, Ruifeng.

[20]Relationship between Sucrose Metabolism and Anthocyanin Biosynthesis During Ripening in Chinese Bayberry Fruit. Shi, Liyu,Shao, Jiarong,Chen, Wei,Yang, Zhenfeng,Cao, Shifeng,Zheng, Yonghua,Jiang, Yueming.

作者其他论文 更多>>