Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality

文献类型: 外文期刊

第一作者: Hu, Lanjuan

作者: Hu, Lanjuan;Li, Ning;Xu, Chunming;Zhong, Silin;Yang, Jingjing;Zhou, Tianqi;Yuliang, Anzhi;Wu, Ying;Liu, Bao;Zhong, Silin;Chen, Yun-Ru;Lin, Xiuyun;Cao, Xiaofeng;Cao, Xiaofeng;Zemach, Assaf;Rustgi, Sachin;von Wettstein, Diter;Rustgi, Sachin;von Wettstein, Diter;Rustgi, Sachin;von Wettstein, Diter

作者机构:

关键词: Oryza sativa L.;monocotyledons

期刊名称:PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA ( 影响因子:11.205; 五年影响因子:12.291 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Cytosine methylation at CG sites (~mCG) plays critical roles in development, epigenetic inheritance, and genome stability in mammals and plants. In the dicot model plant Arabidopsis thaliana, methyltransferase 1 (MET1), a principal CG methylase, functions to maintain ~mCG during DNA replication, with its null mutation resulting in global hypomethylation and pleiotropic developmental defects. Null mutation of a critical CG methylase has not been characterized at a whole-genome level in other higher eukaryotes, leaving the generality of the Arabidopsis findings largely speculative. Rice is a model plant of monocots, to which many of our important crops belong. Here we have characterized a null mutant of OsMet1-2, the major CG methylase in rice. We found that seeds homozygous for OsMet1-2 gene mutation (OsMET1-2~(?/?)), which directly segregated from normal heterozygote plants (OsMET1-2~(+/?)), were seriously maldeveloped, and all germinated seedlings underwent swift necrotic death. Compared with wild type, genome-wide loss of ~mCG occurred in the mutant methylome, which was accompanied by a plethora of quantitativemolecular phenotypes including dysregulated expression of diverse protein-coding genes, activation and repression of transposable elements, and altered small RNA profiles. Our results have revealed conservation but also distinct functional differences in CG methylases between rice and Arabidopsis.

分类号: N

  • 相关文献

[1]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[2]Functional markers in wheat: current status and future prospects. Liu, Yanan,He, Zhonghu,Xia, Xianchun,He, Zhonghu,Appels, Rudi.

[3]Molecular Mapping of the Major Resistance Quantitative Trait Locus qHS2.09 with Simple Sequence Repeat and Single Nucleotide Polymorphism Markers in Maize. Weng, Jianfeng,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Bai, Li,Liu, Changlin,Zhang, Shihuang,Li, Xinhai,Liu, Xianjun,Wang, Zhenhua,Zhang, Lin,Wang, Jianjun.

[4]Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers. Li, X. J.,Xu, X.,Yang, X. M.,Li, X. Q.,Liu, W. H.,Gao, A. N.,Li, L. H.,Li, X. J.,Xu, X..

[5]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[6]A 90-day safety study of genetically modified rice expressing rhIGF-1 protein in C57BL/6J rats. Tang, Maoxue,Cheng, Wenke,Qian, Lili,Yang, Shulin,Cui, Wentao,Li, Kui,Tang, Maoxue,Cheng, Wenke,Qian, Lili,Yang, Shulin,Cui, Wentao,Li, Kui,Xie, Tingting,Yang, Daichang.

[7]Two novel species of Vagicola (Phaeosphaeriaceae) from Italy. Jayasiri, S. C.,Wanasinghe, D. N.,Hyde, K. D.,Wanasinghe, D. N.,Hyde, K. D.,Ariyawansa, H. A.,Jones, E. B. G.,Bahkali, A. H.,Hyde, K. D.,Kang, J. C.,Promputtha, I,Bhat, J.,Bhat, J.,Camporesi, E.,Camporesi, E.,Camporesi, E.. 2015

[8]Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Lu, Yanli,Xu, Jie,Yuan, Zhimin,Lan, Hai,Rong, Tingzhao,Lu, Yanli,Xu, Yunbi,Xu, Yunbi,Shah, Trushar.

[9]Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non-flooded mulching cultivation (NFMC). Ai, YW,Zhang, FS,Lu, SH,Zeng, XZ,Fan, MS. 2005

[10]Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Von Wettstein, D.,Kou, H. P.,Li, Y.,Song, X. X.,Ou, X. F.,Liu, B.,Kou, H. P.,Li, Y.,Song, X. X.,Ou, X. F.,Liu, B.,Kou, H. P.,Ma, J.,Xing, S. C.. 2011

[11]A simplified genomic DNA extraction protocol for pre-germination genotyping in rice. Duan, Y. B.,Zhao, F. L.,Chen, H. D.,Sheng, W.,Teng, J. T.,Zhang, A. M.,Xue, J. P.,Li, H.,Ni, D. H.,Wei, P. C.. 2015

[12]Inheritance of resistance to rice stripe virus in rice line 'BL 1'. Ise, K,Ishikawa, K,Li, CY,Ye, CR. 2002

[13]Genetic dissection of QTL against phosphate deficiency in the hybrid rice 'Xieyou9308'. Zhang, Yingxin,Anis, Galal Bakr,Wu, Weiming,Yu, Ning,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Wang, Ruci,Zhang, Yingxin,Wu, Weiming,Shen, Xihong,Zhan, Xiaodeng,Cheng, Shihua,Cao, Liyong,Anis, Galal Bakr. 2018

[14]Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Shi, Zhenyuan,Rao, Yuchun,Xu, Jie,Hu, Shikai,Fang, Yunxia,Yu, Haiping,Pan, Jiangjie,Liu, Ruifang,Ren, Deyong,Wang, Xiaohu,Zhu, Yangzhou,Zhu, Li,Dong, Guojun,Zhang, Guangheng,Zeng, Dali,Guo, Longbiao,Hu, Jiang,Qian, Qian,Rao, Yuchun,Zhu, Yangzhou,Xu, Jie. 2015

[15]Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Shi, ZhenYing,Wang, Jiang,Wan, XinShan,Shen, GeZhi,Wang, XinQi,Zhang, JingLiu. 2007

[16]Cytoplasm and cytoplasm-nucleus interactions affect agronomic traits in japonica rice. Tao, DY,Hu, FY,Yang, JY,Yang, GF,Yang, YQ,Xu, P,Li, J,Ye, CR,Dai, LY. 2004

[17]Density alteration of nutrient elements in rice grains of a low phytate mutant. Ren, Xue-Liang,Liu, Qing-Long,Fu, Hao-Wei,Wu, Dian-xing,Shu, Qing-Yao. 2007

[18]Analysis of QTLs for panicle exsertion and its relationship with yield and yield-related traits in rice (Oryza sativa L.). Zhao, C. F.,Chen, T.,Zhao, Q. Y.,Zhou, L. H.,Zhao, L.,Zhang, Y. D.,Zhu, Z.,Yao, S.,Wang, C. L.. 2016

[19]Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. Chen, Tao,Zhang, Yadong,Zhao, Ling,Zhu, Zhen,Lin, Jing,Zhang, Suobing,Wang, Cailin. 2009

[20]An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.). Duan, Yongbo,Li, Hao,Li, Juan,Ni, Dahu,Song, Fengshun,Li, Li,Yang, Jianbo,Duan, Yongbo,Song, Fengshun,Zhai, Chenguang,Mei, Wenqian,Gui, Huaping,Zhang, Wanggen,Li, Hao,Li, Juan,Ni, Dahu. 2012

作者其他论文 更多>>