Identification of 23 novel conserved microRNAs in three rice cultivars

文献类型: 外文期刊

第一作者: Yang, Jian

作者: Yang, Jian;Zhang, Heng-Mu;Liu, Xiao-Ya;Li, Jing;Lv, Ming-Fang;Li, Pei-Pei;Chen, Jian-Ping;Liu, Xiao-Ya;Li, Pei-Pei;Dai, Liang-Ying

作者机构:

关键词: High-throughput RNA sequencing;MicroRNAs (miRNAs);Quantitative real-time polymerase chain reaction (qPCR);Rice (Oryza sativa)

期刊名称:GENE ( 影响因子:3.688; 五年影响因子:3.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Plant microRNAs (miRNAs) play important roles as modulators of gene expression at the post-transcriptional level. Previous studies have shown that high-throughput sequencing is a powerful tool for the identification of miRNAs, and it is believed that many more miRNAs remain to be discovered. Here, we found 23 novel conserved miRNAs from three rice cultivars by high-throughput sequencing and further identified these through subsequent cloning and quantitative real-time polymerase chain reaction (qPCR). Eight of these novel miRNAs were detected with significant signals in the three rice cultivars by northern blotting assays. The quantitative analysis of their expression profiles showed that most of these miRNAs were perfectly or imperfectly negatively correlated with their target genes, which suggests that these miRNAs may play important roles during rice development. This is the first genome-wide investigation of miRNAs from different rice cultivars, and the data obtained expand the known rice miRNA inventory and provide further information about the regulatory roles played by miRNAs in rice development.

分类号: R394

  • 相关文献

[1]Knockdown of Microplitis mediator Odorant Receptor Involved in the Sensitive Detection of Two Chemicals. Ren, Li-Yan,Zhang, Yong-Jun,Wu, Kong-Ming,Guo, Yu-Yuan,Li, Ke-Ming. 2012

[2]Transcriptome analysis of rosette and folding leaves in Chinese high-throughput RNA sequencing. Wang, Fengde,Li, Libin,Li, Huayin,Liu, Lifeng,Zhang, Yihui,Gao, Jianwei,Wang, Xiaowu. 2012

[3]A Comparative Transcriptome Analysis Leads to New Insights into the Molecular Events Governing Root Formation in Mulberry Softwood Cuttings. Du, Wei,Ban, Yueyuan,Nie, Hao,Tang, Zhuang,Du, Xiaolong,Cheng, Jialing,Du, Wei.

[4]Molecular mapping of gene Gm-6(t) which confers resistance against four biotypes of Asian rice gall midge in China. Katiyar, SK,Tan, Y,Huang, B,Chandel, G,Xu, Y,Zhang, Y,Xie, Z,Bennett, J. 2001

[5]Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). Zhang, Jing,Zhu, Yong-Guan,Duan, Gui-Lan,Zeng, Da-Li,Qian, Qian,Cheng, Wang-Da. 2008

[6]Recent progress on rice genetics in China. Jiang, Hua,Guo, Long-Biao,Qian, Qian. 2007

[7]A model for photothermal responses of flowering in rice .1. Model description and parameterization. Yin, XY,Kropff, MJ,Horie, T,Nakagawa, H,Centeno, HGS,Zhu, DF,Goudriaan, J. 1997

[8]Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Zhou, Kunneng,Ren, Yulong,Lv, Jia,Wang, Yihua,Liu, Feng,Zhou, Feng,Zhao, Shaolu,Chen, Saihua,Peng, Cheng,Jiang, Ling,Wan, Jianmin,Zhang, Xin,Guo, Xiuping,Cheng, Zhijun,Wang, Jiulin,Wu, Fuqing,Wan, Jianmin.

[9]A receptor-like protein RMC is involved in regulation of iron acquisition in rice. Yang, An,Zhang, Wen-Hao,Li, Yansu,Xu, Yunyun,Zhang, Wen-Hao.

[10]Interactions of Oryza sativa OsCONTINUOUS VASCULAR RING-LIKE 1 (OsCOLE1) and OsCOLE1-INTERACTING PROTEIN reveal a novel intracellular auxin transport mechanism. Liu, Fei,Zhang, Lan,Luo, Yanzhong,Xu, Miaoyun,Fan, Yunliu,Wang, Lei.

[11]Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips. Xiong, Jie,Yang, Yongjie,Fu, Guanfu,Tao, Longxing,Xiong, Jie.

[12]Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles. Glaubitz, Ulrike,Li, Xia,Schaedel, Sandra,Erban, Alexander,Sulpice, Ronan,Kopka, Joachim,Hincha, Dirk K.,Zuther, Ellen,Li, Xia,Schaedel, Sandra,Sulpice, Ronan.

[13]DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). Zheng, Ming,Wang, Yihua,Wang, Yunlong,Wang, Chunming,Lv, Jia,Peng, Cheng,Wu, Tao,Liu, Kai,Zhao, Shaolu,Liu, Xi,Jiang, Ling,Wan, Jianmin,Ren, Yulong,Guo, Xiuping,Wan, Jianmin,Terzaghi, William.

[14]OsARG encodes an arginase that plays critical roles in panicle development and grain production in rice. Ma, Xuefeng,Cheng, Zhijun,Qin, Ruizhen,Heng, Yueqin,Yang, Hui,Wang, Xiaole,Bi, Jingcui,Ma, Xiaoding,Zhang, Xin,Wang, Jiulin,Lei, Cailin,Guo, Xiuping,Wang, Jie,Wu, Fuqing,Wang, Haiyang,Wan, Jianmin,Qiu, Yang,Ren, Yulong,Jiang, Ling,Wan, Jianmin. 2013

[15]Excessive UDPG resulting from the mutation of UAP1 causes programmed cell death by triggering reactive oxygen species accumulation and caspase-like activity in rice. Xiao, Guiqing,Lu, Xiangyang,Xiao, Guiqing,Zhou, Jiahao,Huang, Rongfeng,Zhang, Haiwen. 2018

[16]OsHAK1, a High-Affinity Potassium Transporter, Positively Regulates Responses to Drought Stress in Rice. Chen, Guang,Liu, Chaolei,Gao, Zhenyu,Zhang, Yu,Jiang, Hongzhen,Zhu, Li,Ren, Deyong,Qian, Qian,Chen, Guang,Yu, Ling,Xu, Guohua. 2017

[17]The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice. Ren, Deyong,Rao, Yuchun,Wu, Liwen,Xu, Qiankun,Li, Zizhuang,Yu, Haiping,Zhang, Yu,Leng, Yujia,Hu, Jiang,Zhu, Li,Gao, Zhenyu,Dong, Guojun,Zhang, Guangheng,Guo, Longbiao,Zeng, Dali,Qian, Qian,Rao, Yuchun,Li, Zizhuang. 2016

[18]Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). Zhu, Xiaoyan,Guo, Shuang,Wang, Zhongwei,Du, Qing,Xing, Yadi,Zhang, Tianquan,Shen, Wenqiang,Sang, Xianchun,Ling, Yinghua,He, Guanghua,Guo, Shuang,Du, Qing. 2016

[19]GLUCAN SYNTHASE-LIKE 5 (GSL5) Plays an Essential Role in Male Fertility by Regulating Callose Metabolism During Microsporogenesis in Rice. Shi, Xiao,Sun, Xuehui,Zhang, Zhiguo,Feng, Dan,Zhang, Qian,Han, Lida,Wu, Jinxia,Lu, Tiegang.

[20]Impaired Magnesium Protoporphyrin IX Methyltransferase (ChlM) Impedes Chlorophyll Synthesis and Plant Growth in Rice. Wang, Zhaohai,Hong, Xiao,Hu, Keke,Wang, Ya,Wang, Xiaoxin,Li, Yang,Hu, Dandan,Cheng, Kexin,An, Baoguang,Li, Yangsheng,Wang, Zhaohai,Du, Shiyun. 2017

作者其他论文 更多>>