Leucine-Rich Repeat Receptor-Like Kinase FON1 Regulates Drought Stress and Seed Germination by Activating the Expression of ABA-Responsive Genes in Rice

文献类型: 外文期刊

第一作者: Feng, Lei

作者: Feng, Lei;Gao, Zhenrui;Xiao, Guiqing;Huang, Rongfeng;Zhang, Haiwen;Huang, Rongfeng;Zhang, Haiwen

作者机构:

关键词: FON1;Drought;ABA;Rice;Reactive oxygen species

期刊名称:PLANT MOLECULAR BIOLOGY REPORTER ( 影响因子:1.595; 五年影响因子:2.042 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Receptor-like kinases (RLKs) play important roles in regulating plant development and responses to various environmental stresses. FLORAL ORGAN NUMBER1 (FON1), a leucine-rich repeat receptor-like kinase, was reported to participate in the control of vegetative and reproductive development, but little is known about its function in response to abiotic stress in rice. Here, we reported that FON1 was involved in the regulation of water stress and seed germination process by mediating the expression of abscise acid (ABA)-responsive genes. FON1 was expressed mainly in root and shoot and could be induced by NaCl, drought, and ABA treatment. Transgenic plants overexpressing FON1 exhibited enhanced drought stress and reduced accumulation of H2O2 and malondialdehyde compared to the control. In contrast, RNAi-mediated disruption of FON1 resulted in decreased drought stress associated with the excessive ROS accumulation. At the transcription level, several stress-related and ABA-responsive genes, including LEA3, OsbZIP46, APX3, APX5, and CATB, were upregulated in transgenic plants overexpressing FON1, but correspondingly downregulated in RNAi plants. Moreover, overexpression of FON1 led to delayed seed germination, inhibited early root growth, and increased susceptibility to ABA, likely by activating the expression of ABA-responsive homeodomain transcription factors. These results provide new insight into the function of FON1 in the regulation of drought stress and early growth processes by tuning ABA signaling in rice.

分类号: Q94`Q7

  • 相关文献

[1]ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants. Xu, Dong-Bei,Li, Xue-Yin,Chen, Yao-Feng,Gao, Shi-Qing,Ma, You-Zhi,Xu, Zhao-Shi,Li, Lian-Cheng,Chen, Ming,Gao, Shi-Qing,Zhao, Chang-Ping,Tang, Yi-Miao,Li, Xue-Yin.

[2]SlHDA5, a Tomato Histone Deacetylase Gene, Is Involved in Responding to Salt, Drought, and ABA. Yu, Xiaohui,Gao, Qiong,Chen, Guoping,Guo, Jun-E,Guo, Xuhu,Tang, Boyan,Hu, Zongli,Gao, Qiong. 2018

[3]Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Zhang, Xia,Wang, Lei,Meng, Hui,Wen, Hongtao,Fan, Yunliu,Zhao, Jun.

[4]Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.). Wang, Li-feng.

[5]OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. Xiao, Guiqing,Lu, Xiangyang,Xiao, Guiqing,Qin, Hua,Zhou, Jiahao,Quan, Ruidang,Huang, Rongfeng,Zhang, Haiwen.

[6]Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Chen, Yixing,Zhou, Xiaojin,Chang, Shu,Chu, Zhilin,Wang, Hanmeng,Han, Shengcheng,Wang, Yingdian,Zhou, Xiaojin.

[7]Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses. Yu, Y.,Cui, Y. C.,Ren, C.,Rocha, P. S. C. F.,Wang, M. L.,Xia, X. J.,Yu, Y.,Ren, C.,Peng, M.,Xu, G. Y.. 2016

[8]Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.. Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-Lin,Peng, Ri-He,Xiong, Ai-Sheng,Chen, Jian-Min,Xu, Fang,Zhu, Hong,Yao, Quan-Hong.

[9]Salicylic Acid and Abiotic Stress Responses in Rice. Pal, M.,Kovacs, V.,Szalai, G.,Soos, V.,Janda, T.,Ma, X.,Liu, H.,Mei, H.. 2014

[10]Expression profile analysis of 9 heat shock protein genes throughout the life cycle and under abiotic stress in rice. Ye ShuiFeng,Yu ShunWu,Shu LieBo,Wu JinHong,Luo LiJun,Ye ShuiFeng,Wu AiZhong,Wu AiZhong. 2012

[11]Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Ji, Kuixian,Wang, Yangyang,Shen, Shihua,Chen, Hui,Sun, Weining,Lou, Qiaojun,Mei, Hanwei,Ji, Kuixian,Wang, Yangyang. 2012

[12]Improvement of rice drought tolerance through backcross breeding: Evaluation of donors and selection in drought nurseries. Lafitte, HR,Li, ZK,Vijayakumar, CHM,Gao, YM,Shi, Y,Xu, JL,Fu, BY,Ali, AJ,Domingo, J,Maghirang, R,Torres, R,Mackill, D. 2006

[13]Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Zhang, Haiwen,Liu, Wu,Wan, Liyun,Li, Fang,Zhang, Zhijin,Huang, Rongfeng,Liu, Wu,Li, Fang,Dai, Liangying,Li, Dingjun,Zhang, Haiwen,Zhang, Zhijin,Huang, Rongfeng,Zhang, Haiwen,Zhang, Zhijin,Huang, Rongfeng. 2010

[14]Recurrent selection breeding by dominant male sterility for multiple abiotic stresses tolerant rice cultivars. Pang, Yunlong,Wang, Xiaoqian,Xu, Jianlong,Li, Zhikang,Pang, Yunlong,Wang, Xiaoqian,Ali, Jauhar,Pang, Yunlong,Chen, Kai,Xu, Jianlong,Xu, Jianlong,Li, Zhikang.

[15]Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice. Wang, Dekai,Liu, Heqin,Li, Sujuan,Zhai, Guowei,Shao, Jianfeng,Tao, Yuezhi,Wang, Dekai,Liu, Heqin,Li, Sujuan,Zhai, Guowei,Shao, Jianfeng,Tao, Yuezhi. 2015

[16]Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Yin, LY,Huang, JQ,Huang, WM,Li, DH,Wang, GH,Liu, YD.

[17]Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Yu, Linhui,Chen, Xi,Wang, Zhen,Xiang, Chengbin,Wang, Shimei,Zhu, Qisheng,Wang, Yuping,Li, Shigui,Wang, Shimei,Zhu, Qisheng.

[18]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[19]Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Kong, Xiangqiang,Wang, Tao,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Dong, Hezhong,Wang, Tao,Dong, Hezhong.

[20]H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity. Kong, Xiangqiang,Luo, Zhen,Dong, Hezhong,Eneji, A. Egrinya,Li, Weijiang.

作者其他论文 更多>>