Inducible and constitutive expression of an elicitor gene Hrip1 from Alternaria tenuissima enhances stress tolerance in Arabidopsis

文献类型: 外文期刊

第一作者: Qiu, De-Wen

作者: Qiu, De-Wen;Zeng, Hong-Mei;Guo, Li-Hua;Yang, Xiu-Fen;Liu, Zheng

作者机构:

关键词: Protein elicitor;Hrip1;Transgenic Arabidopsis;Drought stress;Salt stress;Botrytis

期刊名称:TRANSGENIC RESEARCH ( 影响因子:2.788; 五年影响因子:2.377 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Hrip1 is a novel hypersensitive response-inducing protein secreted by Alternaria tenuissima that activates defense responses and systemic acquired resistance in tobacco. This study investigates the role that Hrip1 plays in responses to abiotic and biotic stress using transgenic Arabidopsis thaliana expressing the Hrip1 gene under the control of the stress-inducible rd29A promoter or constitutive cauliflower mosaic virus 35S promoter. Bioassays showed that inducible Hrip1 expression in rd29Aa center dot Hrip1 transgenic lines had a significantly higher effect on plant height, silique length, plant dry weight, seed germination and root length under salt and drought stress compared to expression in 35Sa center dot Hrip1 lines and wild type plants. The level of enhancement of resistance to Botrytis cinerea by the 35Sa center dot Hrip1 lines was higher than in the rd29Aa center dot Hrip1 lines. Moreover, stress-related gene expression in the transgenic Arabidopsis lines was significantly increased by 200 mM NaCl and 200 mM mannitol treatments, and defense genes in the jasmonic acid and ethylene signaling pathway were significantly up-regulated after Botrytis inoculation in the Hrip1 transgenic plants. Furthermore, the activity of some antioxidant enzymes, such as peroxidase and catalase increased after salt and drought stress and Botrytis infection. These results suggested that the Hrip1 protein contributes to abiotic and biotic resistance in transgenic Arabidopsis and may be used as a useful gene for resistance breeding in crops. Although the constitutive expression of Hrip1 is suitable for biotic resistance, inducible Hrip1 expression is more responsive for abiotic resistance.

分类号: R394

  • 相关文献

[1]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[2]Tomato SlDREB1 gene conferred the transcriptional activation of drought-induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress. Jiang, Linlin,Cheng, Xianguo,Jiang, Linlin,Wang, Yingbo,Li, Wei,Cheng, Xianguo,Jiang, Linlin,Wang, Yingbo,Li, Wei,Cheng, Xianguo,Zhang, Shuhui,He, Rui,Han, Jiao.

[3]SpBADH of the halophyte Sesuvium portulacastrum strongly confers drought tolerance through ROS scavenging in transgenic Arabidopsis. Yang, Chenglong,Zhou, Yang,Fan, Jie,Shen, Longbin,Yao, Yuan,Li, Ruimei,Fu, Shaoping,Duan, Ruijun,Guo, Jianchun,Yang, Chenglong,Zhou, Yang,Fan, Jie,Shen, Longbin,Yao, Yuan,Li, Ruimei,Fu, Shaoping,Duan, Ruijun,Guo, Jianchun,Yang, Chenglong,Fu, Yuhua,Zhou, Yang,Fan, Jie,Hu, Xinwen.

[4]An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Pan, Yu,Hu, Zongli,Chen, Guoping,Pan, Yu,Seymour, Graham B.,Lu, Chungui,Chen, Xuqing. 2012

[5]Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. Liu, Qiaohong,Liu, Zhibin,Yang, Hao,Wang, Jianmei,Li, Xufeng,Yang, Yi,Yang, Liang. 2016

[6]Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). Li, Hui-Yong,Wang, Tian-Yu,Shi, Yun-Su,Fu, Jun-Jie,Song, Yan-Chun,Wang, Guo-Ying,Li, Yu.

[7]Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Ma, Qiaoli,Kang, Junmei,Zhang, Kun,Wang, Tenghua,Sun, Yan,Kang, Junmei,Long, Ruicai,Zhang, Tiejun,Yang, Qingchuan,Ma, Qiaoli,Xiong, Junbo.

[8]Simultaneous Overexpression of the HhERF2 and PeDREB2a Genes Enhanced Tolerances to Salt and Drought in Transgenic Cotton. Li, JinBo,Dong, XueNi,Shao, JiRong,Li, JinBo,Dong, XueNi,Lei, Zhi,Li, YongLiang,Yang, PeiYang,Tao, Fei,Wu, YanMin,Zhao, Liang,Li, Shi-Gang,Du, LinFeng.

[9]A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. Xu, Yi,Jin, Zhiqiang,Hu, Wei,Liu, Juhua,Zhang, Jianbin,Jia, Caihong,Miao, Hongxia,Xu, Biyu,Jin, Zhiqiang. 2014

[10]Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Yu, Lin-Hui,Chen, Xi,Zhao, Ping,Xu, Ping,Xiang, Cheng-Bin,Wu, Shen-Jie,Jiao, Gai-Li,Peng, Yi-Shu,Pei, Yan,Liu, Rui-Na,Zhu, Jian-Bo.

[11]Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor-mediated defence responses in tobacco. Liu, Q.,Yang, X.,Long, C.,Zhao, M.,Zeng, H.,Liu, H.,Yuan, J.,Qiu, D..

[12]Stable isotope labelled mass spectrometry for quantification of the relative abundances for expressed proteins induced by PeaT1. Yang XiuFen,Zeng HongMei,Mao JianJun,Liu Hua,Zhang YunHua,Qiu DeWen. 2010

[13]Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana. Yang, Xiufen,Zeng, Hongmei,Guo, Lihua,Yuan, Jingjing,Qiu, Dewen. 2014

[14]Over-expression of ZmPti1, a homologue to Pti1, increases salt tolerance of Arabidopsis thaliana. Zou, Huawen,Wu, Zhongyi,Zhang, Xiuhai,Wang, Yongqin,Huang, Conglin,Zou, Huawen. 2010

[15]Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp triphenylmethane reductase in transgenic Arabidopsis. Fu, Xiao-Yan,Zhao, Wei,Xiong, Ai-Sheng,Tian, Yong-Sheng,Zhu, Bo,Peng, Ri-He,Yao, Quan-Hong. 2013

[16]Overexpression of a new Cys(2)/His(2) zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis. Huai, Junling,Zheng, Jun,Wang, Guoying,Huai, Junling. 2009

[17]Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response. Li, Xueyin,Ma, Lingjian,Feng, Biane,Zhang, Fengjie,Tang, Yimiao,Zhang, Liping,Zhao, Changping,Gao, Shiqing,Feng, Biane,Zhang, Fengjie. 2016

[18]Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis. Yang, Junpin,Tan, Jun,Yang, Liang,Chang, Wei,Li, Zhi,Miao, Mingjun,Li, Yuejian,Yang, Liang,Chang, Wei,Li, Zhi,Miao, Mingjun,Li, Yuejian,Wu, Lintao,Liu, Zhibin. 2018

[19]Isolation and drought-tolerant function analysis of ZmPti1-1, a homologue to Pti1, from maize (Zea mays L.). Li, Zhiliang,Bian, Mingdi,Wu, Zhongyi,Zhang, Xiuhai,Huang, Conglin,Li, Zhiliang,Yang, Qing,Li, Zhiliang. 2011

[20]Transgenic expression of a sorghum gene (SbLRR2) encoding a simple extracellular leucine-rich protein enhances resistance against necrotrophic pathogens in Arabidopsis. Zhu, Fu-Yuan,Lo, Clive,Zhu, Fu-Yuan,Zhang, Jianhua,Zhu, Fu-Yuan,Zhang, Jianhua,Li, Lei.

作者其他论文 更多>>