Identification and analysis of the mechanism underlying heat-inducible expression of rice aconitase 1

文献类型: 外文期刊

第一作者: Li, Juan

作者: Li, Juan;Qin, Rui-Ying;Li, Hao;Xu, Rong-Fang;Qiu, Chun-Hong;Sun, Yi-Chen;Ma, Hui;Yang, Ya-Chun;Ni, Da-Hu;Li, Li;Wei, Peng-Cheng;Yang, Jian-Bo;Li, Juan;Yang, Jian-Bo

作者机构:

关键词: Heat response;Aconitase;W-box;WRKY;Promoter truncation

期刊名称:PLANT SCIENCE ( 影响因子:4.729; 五年影响因子:5.132 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Respiratory metabolism is an important though poorly understood facet of plant adaptation to stress. Posttranslational modification of aconitase, a component of the tricarboxylic acid cycle (TCA), may be involved in stress tolerance. However, such stress-related transcriptional regulation and its mechanism remain unknown. In this study, we found that expression of the rice Aconitase gene OsACO1 is induced in a time-dependent manner by heat but not other typical abiotic stresses. To analyze the transcriptional regulation mechanism underlying the response to heat, the OsACO1 promoter (P-OsACO1) was isolated and characterized in transgenic rice. Using qualitative and quantitative analyses, we found that the expression of the GUS reporter gene responded to heat in different tissues and at different stages of development when driven by P-OsACO1. A series of 5' distal deletions of P-OsACO1 was generated to delineate the region responsible for heat-induced gene expression. Transient expression analyses in tobacco leaves identified a 322-bp minimal region between -1386 and -1065 as being essential and sufficient for heat-induced expression by P-OsACO1. We screened for known heat response-related cis-elements in this 322-bp region; however, sequences correlating with heat-induced gene expression were not identified in P-OsACO1. Therefore, truncations and successive mutagenesis analyses were performed in this 322-bp region. By comparing the activities of promoter fragments and their derivatives, our results indicated that the heat response element resided in a 9-bp region between -1132 and -1124, a sequence that contains a W-box motif. Additional site-directed mutagenesis analyses eliminated the heat response activity of P-OsACO1 via the W-box element, and an electrophoretic mobility shift assay (EMSA) indicated the binding of P-OsACO1 by factors in the nuclear extracts of heat-stressed rice seedlings in a W-box-dependent manner. Our results illustrate the expression pattern of a key component of the TCA response to abiotic stress and establish a putative regulatory pathway in the transcriptional modulation of rice respiratory metabolism genes in response to heat. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

分类号: Q94

  • 相关文献

[1]Molecular cloning and characterization of the promoter for the multiple stress-inducible gene BjCHI1 from Brassica juncea. Wu, Xue-Feng,Wang, Chun-Lian,Xie, En-Bei,Gao, Ying,Fan, Ying-Lun,Zhao, Kai-Jun,Wu, Xue-Feng,Liu, Pi-Qing.

[2]Changes in organic acids and acid metabolism enzymes in melon fruit during development. Tang, Mi,Bie, Zhi-long,Wu, Ming-zhu,Yi, Hong-ping,Feng, Jong-xin. 2010

[3]Differential expression of iron-sulfur cluster biosynthesis genes during peach flowering. Song, Z. -Z.,Zhang, B. -B.,Zhang, C. -H.,Ma, R. -J.,Yu, M. -L.,Song, Z. -Z.,Zhang, B. -B.,Zhang, C. -H.,Ma, R. -J.,Yu, M. -L..

[4]Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut. Song, Hui,Wang, Pengfei,Zhao, Chuanzhi,Bi, Yuping,Wang, Xingjun,Lin, Jer-Young. 2016

[5]Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.. Diao, Wei-Ping,Wang, Shu-Bin,Liu, Jin-Bing,Pan, Bao-Gui,Guo, Guang-Jun,Wei, Ge,Diao, Wei-Ping,Snyder, John C.. 2016

[6]Molecular characterization of PR and WRKY genes during SA- and MeJA-induced resistance against Colletotrichum musae in banana fruit. Tang, Yang,Kuang, Jian-fei,Wang, Feng-yan,Chen, Lei,Xiao, Yun-yi,Xie, Hui,Lu, Wang-jin,Chen, Jian-ye,Hong, Ke-qian. 2013

[7]Comparative expression analysis of five WRKY genes from Tibetan hulless barley under various abiotic stresses between drought-resistant and sensitive genotype. Li, Huie,Lan, Xiaozhong,Li, Huie,Zhou, Qi,Guo, Qiqiang,Guo, Qiqiang,Wei, Na.

[8]Identification and expression analysis of group III WRKY transcription factors in cotton. DOU Ling-ling,GUO Ya-ning,Ondati Evans,PANG Chao-you,WEI Heng-ling,SONG Mei-zhen,FAN Shu-li,YU Shu-xun. 2016

[9]Characteristic Expression Analysis of Five WRKY Transcriptional Factors in Rice Leaf Growth and Disease Resistance Reaction. Miao Liu-Yang,Li Li-Yun,Liu Zhao,Liu Yu-Meng,Liu Guo-Zhen,Jiang Guang-Huai,Yang Feng-Huan,He Chen-Yang. 2013

[10]Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. Li, Donghua,Liu, Pan,Yu, Jingyin,Wang, Linhai,Dossa, Komivi,Zhang, Yanxin,Zhou, Rong,Wei, Xin,Zhang, Xiurong,Dossa, Komivi,Wei, Xin. 2017

[11]OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Shen, Huaishun,Liu, Citao,Zhang, Yi,Meng, Xiuping,Wang, Xiping,Shen, Huaishun,Zhou, Xin,Liu, Citao,Chu, Chengcai,Liu, Citao,Chu, Chengcai.

作者其他论文 更多>>