Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2

文献类型: 外文期刊

第一作者: Zhang, Shuai

作者: Zhang, Shuai;Li, Xin;Sun, Zenghui;Shao, Shujun;Zhou, Yanhong;Xia, Xiaojian;Yu, Jingquan;Shi, Kai;Li, Xin;Yu, Jingquan;Hu, Lingfei;Ye, Meng

作者机构:

关键词: Botrytis cinerea;nonexpressor of pathogenesis related genes 1 (NPR1);elevated CO2;jasmonic acid;plant disease;Pseudomonas syringae;salicylic acid;Solanum lycopersicum (tomato);tobacco mosaic virus (TMV)

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Increasing CO2 concentrations ([CO2]) have the potential to disrupt plant-pathogen interactions in natural and agricultural ecosystems, but the research in this area has often produced conflicting results. Variations in phytohormone salicylic acid (SA) and jasmonic acid (JA) signalling could be associated with variations in the responses of pathogens to plants grown under elevated [CO2]. In this study, interactions between tomato plants and three pathogens with different infection strategies were compared. Elevated [CO2] generally favoured SA biosynthesis and signalling but repressed the JA pathway. The exposure of plants to elevated [CO2] revealed a lower incidence and severity of disease caused by tobacco mosaic virus (TMV) and by Pseudomonas syringae, whereas plant susceptibility to necrotrophic Botrytis cinerea increased. The elevated [CO2]-induced and basal resistance to TMV and P. syringae were completely abolished in plants in which the SA signalling pathway nonexpressor of pathogenesis-related genes 1 (NPR1) had been silenced or in transgenic plants defective in SA biosynthesis. In contrast, under both ambient and elevated [CO2], the susceptibility to B. cinerea highly increased in plants in which the JA signalling pathway proteinase inhibitors (PI) gene had been silenced or in a mutant affected in JA biosynthesis. However, plants affected in SA signalling remained less susceptible to this disease. These findings highlight the modulated antagonistic relationship between SA and JA that contributes to the variation in disease susceptibility under elevated [CO2]. This information will be critical for investigating how elevated CO2 may affect plant defence and the dynamics between plants and pathogens in both agricultural and natural ecosystems.

分类号: Q94

  • 相关文献

[1]Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2-induced stomatal movement in tomato. Shi, Kai,Li, Xin,Zhang, Huan,Zhang, Guanqun,Liu, Yaru,Zhou, Yanhong,Xia, Xiaojian,Chen, Zhixiang,Yu, Jingquan,Shi, Kai,Yu, Jingquan,Li, Xin,Chen, Zhixiang.

[2]Tomato-Pseudomonas syringae interactions under elevated CO2 concentration: the role of stomata. Li, Xin,Sun, Zenghui,Shao, Shujun,Zhang, Shuai,Ahammed, Golam Jalal,Zhang, Guanqun,Jiang, Yuping,Zhou, Jie,Xia, Xiaojian,Zhou, Yanhong,Yu, Jingquan,Shi, Kai,Li, Xin,Jiang, Yuping,Yu, Jingquan,Shi, Kai.

[3]Elevated O-3 and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci. Cui, Hongying,Zhang, Youjun,Cui, Hongying,Sun, Yucheng,Ge, Feng,Chen, Fajun. 2016

[4]A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Cao, Sen,Zhao, Ping-Ping,Jia, Shu-Dan,Zhang, Zhong-Wei,Yuan, Shu,Shang, Jing,Xu, Fei,Wang, Shao-Dong,Xu, Mo-Yun,Wang, Jian-Hui,Lin, Hong-Hui,Wang, Jian-Hui.

[5]Pre-infestation of Tomato Plants by Aphids Modulates Transmission-Acquisition Relationship among Whiteflies, Tomato Yellow Leaf Curl Virus (TYLCV) and Plants. Ge, Feng,Tan, Xiao L.,Chen, Ju L.,Tan, Xiao L.,Liu, Tong X.,Tan, Xiao L.,Liu, Tong X.,Benelli, Giovanni,Desneux, Nicolas,Yang, Xue Q.. 2017

[6]Three-Way Interactions Between the Tomato Plant, Tomato Yellow Leaf Curl Virus, and Bemisia tabaci (Hemiptera: Aleyrodidae) Facilitate Virus Spread. Shi, Xiaobin,Pan, Huipeng,Xie, Wen,Fang, Yong,Chen, Gong,Yang, Xin,Wu, Qingjun,Wang, Shaoli,Zhang, Youjun,Jiao, Xiaoguo.

[7]Aphid performance changes with plant defense mediated by Cucumber mosaic virus titer. Gao, Yang,Yan, Shuo,Tang, Xin,Zhang, Deyong,Liu, Yong,Zhang, Deyong,Liu, Yong,Zhou, Xuguo. 2016

[8]The whitefly-associated facultative symbiont Hamiltonella defensa suppresses induced plant defences in tomato. Su, Qi,Xie, Wen,Wu, Qingjun,Wang, Shaoli,Zhang, Youjun,Su, Qi,Oliver, Kerry M..

[9]Feeding by Whiteflies Suppresses Downstream Jasmonic Acid Signaling by Eliciting Salicylic Acid Signaling. Zhang, Peng-Jun,Li, Wei-Di,Huang, Fang,Zhang, Jin-Ming,Lu, Yao-Bin,Xu, Fang-Cheng,Xu, Fang-Cheng.

[10]Drought-Tolerant Brassica rapa Shows Rapid Expression of Gene Networks for General Stress Responses and Programmed Cell Death Under Simulated Drought Stress. Chen, Sheng,Turner, Neil C.,Nelson, Matthew N.,Cowling, Wallace A.,Guo, Yi Ming,Chen, Sheng,Turner, Neil C.,Nelson, Matthew N.,Cowling, Wallace A.,Guo, Yi Ming,Samans, Birgit,Kibret, Kidist B.,Hatzig, Sarah,Snowdon, Rod J.,Turner, Neil C.,Nelson, Matthew N..

[11]NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana. Li, Xin,Ahammed, Golam Jalal,Li, Xin,Yu, Jingquan,Shi, Kai. 2015

[12]Genome-Wide Characterization of miRNAs Involved in N Gene-Mediated Immunity in Response to Tobacco Mosaic Virus in Nicotiana benthamiana. Yin, Kangquan,Tang, Yang,Zhao, Jinping,Zhao, Jinping. 2015

[13]Tobacco Mosaic Virus (TMV) Inhibitors from Picrasma quassioides Benn. Chen, Jia,Yan, Xiao-Hui,Fang, Xin,Di, Ying-Tong,Hao, Xiao-Jiang,Chen, Jia,Yan, Xiao-Hui,Dong, Jia-Hong,Sang, Peng,Zhang, Zhong-Kai,Dong, Jia-Hong,Sang, Peng,Zhang, Zhong-Kai.

[14]Anti-Tobacco Mosaic Virus (TMV) Quassinoids from Brucea javanica (L.) Merr.. Yan, Xiao-Hui,Chen, Jia,Di, Ying-Tong,Fang, Xin,Wang, Yue-Hu,He, Hong-Ping,Hao, Xiao-Jiang,Yan, Xiao-Hui,Chen, Jia,Dong, Jia-Hong,Sang, Peng,Zhang, Zhong-Kai.

[15]A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). Zhou, Liang,Cheung, Ming-Yan,Zhang, Shi-Hong,Sun, Samuel Sai-Ming,Lam, Hon-Ming,Zhou, Liang,Cheung, Ming-Yan,Zhang, Shi-Hong,Sun, Samuel Sai-Ming,Lam, Hon-Ming,Zhang, Qi,Lei, Cai-Lin,Zhang, Shi-Hong.

[16]CDPK1, an Arabidopsis thaliana calcium-dependent protein kinase, is involved in plant defense response. Nie, L.,Wang, R.,Li, G.,Nie, L.,Xia, Y..

[17]Evaluation of the Potential of five Housekeeping Genes for Identification of Quarantine Pseudomonas syringae. Hu, Baishi,Lu, Songyu,Tian, Qian,Zhao, Wenjun,Tian, Qian.

[18]Photobiological effects of nano-TiO2 semiconductors sol. Zhang Ping,Cui Hai-Xin,Li Ling-Ling. 2008

[19]Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Liang, Yongchao,Sun, Wanchun,Zhu, Yong-Guan,Christie, Peter.

[20]DIAGNOSTIC MODEL FOR WHEAT LEAF CONDITIONS USING IMAGE FEATURES AND A SUPPORT VECTOR MACHINE. Du, K.,Sun, Z.,Li, Y.,Zheng, F.,Chu, J.,Su, Y.. 2016

作者其他论文 更多>>