Distinct photorespiratory reactions are preferentially catalyzed by glutamate:glyoxylate and serine:glyoxylate aminotransferases in rice
文献类型: 外文期刊
第一作者: Zhang, Zhisheng
作者: Zhang, Zhisheng;Peng, Xinxiang;Zhang, Zhisheng;Ou, Juanying;Peng, Xinxiang;Mao, Xingxue;Zhang, Zhisheng;Ye, Nenghui;Zhang, Jianhua
作者机构:
期刊名称:JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY ( 影响因子:6.252; 五年影响因子:5.375 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: The metabolic function of glutamate:glyoxylate aminotransferase (GGAT) and serine:glyoxylate aminotransferase (SGAT) for photorespiration is still not exactly understood so far though it is mostly held that both enzymes may work in parallel in the reaction of glyoxylate to glycine during photorespiration of plants. Here, for the first time, we define the genes encoding GGAT and SGAT and report their biochemical and enzymatic properties in rice plants, in contrast to those from other plant species. Noticeably, GGAT exhibited approximately 18 fold higher catalytic efficiency (K-cat/K-m) with glyoxylate and glutamate than SGAT with glyoxylate and serine, and additionally, rice leaves usually contain 3-4 times higher abundance of glutamate relative to serine, implicating that GGAT may preferentially utilize glyoxylate to form glycine over SGAT. When SCAT or GGAT activity was regulated by gene transformation or nitrogen deficiency, respectively, it was observed that the glycine content was positively related to GGAT activities, while both serine and glycine contents were negatively related to SGAT activities. The results suggest that GGAT preferentially catalyzes the conversion of glyoxylate into glycine while SGAT is mainly responsible for the transamination reaction of serine to hydroxypyruvate in the photorespiratory pathway of rice. (C) 2014 Elsevier B.V. All rights reserved.
分类号: Q`O6
- 相关文献
作者其他论文 更多>>
-
Rhizosphere and phyllosphere microbial communities of male and female plants of Morus macroura
作者:Liu, Quanwei;Xu, Danping;Chen, Guantao;Zhang, Jianhua;Wang, Xie;Ali, Habib
关键词:Morus macroura; Dioecious plants; Phyllosphere; Rhizosphere; Microbial communities
-
OsRHS Negatively Regulates Rice Heat Tolerance at the Flowering Stage by Interacting With the HSP Protein cHSP70-4
作者:Mao, Xingxue;Yu, Hang;Zhang, Lanlan;Lv, Shuwei;Jiang, Liqun;Zhang, Jing;Sun, Bingrui;Li, Chen;Ma, Yamei;Liu, Qing;Xue, Jiao;Zhu, Qingfeng;Feng, Yanzhao;Yu, Yang
关键词:flowering stage; heat tolerance; HSP70; OsRHS; PME; rice
-
Fluid streaming and microparticles manipulating based on piezoelectric arrays excitation with various switching frequencies and duty cycles
作者:Zhang, Fan;Wei, Bin;Zhang, Fan;Wei, Bin;Zhang, Bing;Ma, Cong;Zhang, Jianhua;Wei, Bin
关键词:Acoustic; streaming; duty cycle; piezoelectrics; tweezers
-
Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning
作者:Li, Weinan;Peng, Jun;Zhang, Jianhua;Zhang, Mingjun;Yang, Zhaoen;Peng, Jun;Chai, Mao;Fan, Jingchao;Zhang, Jianhua;Li, Weinan;Lan, Yubin
关键词:
-
Auxin-Producing Pseudomonas Recruited by Root Flavonoids Increases Rice Rhizosheath Formation through the Bacterial Histidine Kinase Under Soil Drying
作者:Xu, Feiyun;Wang, Yongsen;Yang, Jinyong;Zhang, Xue;Tong, Lu;Bai, Chuqi;Chen, Shu;Sun, Leyun;Du, Chongxuan;Fang, Ju;Gengli, Jiahong;Liu, Jianping;Xu, Weifeng;Zhang, Xue;Wang, Ke;Ding, Fan;Xu, Mengqiang;Li, Liang;Zhang, Qian;Wang, Zhengrui;Pang, Jiayin;Yu, Xin;Zhu, Yiyong;Zhang-Zheng, Huanyuan;Zhang-Zheng, Huanyuan;Zhang, Jianhua
关键词:polyploidy; pseudomonas; rhizosheath formation; rice; soil drying
-
EMSAM: enhanced multi-scale segment anything model for leaf disease segmentation
作者:Li, Junlong;Feng, Quan;Yang, Sen;Zhang, Jianhua;Zhang, Jianhua
关键词:segment anything model; parameter efficient fine-tuning; adapter tuning; leaf disease segmentation; multi-task learning
-
Nutritional quality assessment of mulberry leaves from different varieties as an alternative feed in ruminant nutrition
作者:Liu, Quanwei;Zhuo, Zhihang;Xu, Danping;Zhang, Jianhua;Chen, Guantao;Wang, Xie;Ali, Habib
关键词:Mulberry leaves; Feed quality; Mineral element; Amino acid; Comprehensive evaluation