The Arabidopsis Transcription Factor BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 Is a Direct Substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and Regulates Immunity

文献类型: 外文期刊

第一作者: Yang, Fan

作者: Yang, Fan;Zhang, Jie;Yang, Fan;Li, Lin;Chen, She;Chen, Huamin

作者机构:

期刊名称:PLANT PHYSIOLOGY ( 影响因子:8.34; 五年影响因子:8.972 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Pathogen-associated molecular patterns (PAMPs) are recognized by plant pattern recognition receptors to activate PAMP-triggered immunity (PTI). Mitogen-activated protein kinases (MAPKs), as well as other cytoplasmic kinases, integrate upstream immune signals and, in turn, dissect PTI signaling via different substrates to regulate defense responses. However, only a few direct substrates of these signaling kinases have been identified. Here, we show that PAMP perception enhances phosphorylation of BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1), a transcription factor involved in brassinosteroid (BR) signaling pathway, through pathogen-induced MAPKs in Arabidopsis (Arabidopsis thaliana). BES1 interacts with MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and is phosphorylated by MPK6. bes1 loss-of-function mutants display compromised resistance to bacterial pathogen Pseudomonas syringae pv tomato DC3000. BES1 S286A/S137A double mutation (BES1(SSAA)) impairs PAMP-induced phosphorylation and fails to restore bacterial resistance in bes1 mutant, indicating a positive role of BES1 phosphorylation in plant immunity. BES1 is phosphorylated by glycogen synthase kinase3 (GSK3)-like kinase BR-insensitive2 (BIN2), a negative regulator of BR signaling. BR perception inhibits BIN2 activity, allowing dephosphorylation of BES1 to regulate plant development. However, BES1(SSAA) does not affect BR-mediated plant growth, suggesting differential residue requirements for the modulation of BES1 phosphorylation in PTI and BR signaling. Our study identifies BES1 as a unique direct substrate of MPK6 in PTI signaling. This finding reveals MAPK-mediated BES1 phosphorylation as another BES1 modulation mechanism in plant cell signaling, in addition to GSK3-like kinase-mediated BES1 phosphorylation and F box protein-mediated BES1 degradation.

分类号: Q945

  • 相关文献
作者其他论文 更多>>