Mitigation of CH4 and N2O emissions from a forage rice field fertilized with aerated liquid fraction of cattle slurry by optimizing water management and topdressing

文献类型: 外文期刊

第一作者: Riya, Shohei

作者: Riya, Shohei;Muroi, Yurie;Kamimura, Miu;Terada, Akihiko;Hosomi, Masaaki;Zhou, Sheng;Kobara, Yuso

作者机构:

关键词: Greenhouse gas emission;Rice paddy field;Cattle slurry;Mitigation;Topdressing;Water management

期刊名称:ECOLOGICAL ENGINEERING ( 影响因子:4.035; 五年影响因子:4.611 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Fertilization of aerated liquid fraction of cattle slurry (ALCS) to forage rice fields is a method to utilize surplus amount of cattle slurry and produce feed. However, ALCS application causes high emissions of CH4 and N2O from rice fields. In this study, we tested the abilities of several different field management strategies to mitigate CH4 and N2O emissions. The management strategies consisted of two different drainage patterns (midsummer drainage, C; drainage before topdressing, B) and two topdressing patterns (a stepwise increase in topdressing, I; a stepwise decrease in topdressing, D). We also analyzed changes in the archaeal community in each treatment during the experimental period to examine the relationship between CH4 emissions and methanogenic archaea. In each treatment, chemical fertilizer was applied as a basal dressing (50 kgNha (1)) and ALCS was applied three times as a topdressing (214-244 kgNha (1)). In CI, BI, CD, and BD, the cumulative emissions were 191, 158, 127, and 34.5 kg C ha (1) for CH4, respectively, and 0.52, 2.32, -0.18, and -0.21 kgNha (1) for N2O, respectively. The abundance of Methanocella, a genus of methanogenic archaea, increased over time in CI and CD, but remained constant in BI and BD. This result suggested that drainage before topdressing effectively suppressed the growth of Methanocella. The lowest carbon dioxide equivalents (CO2 eq) value was in BD (75-84% lower than those in other treatments). These results indicate that the combination of drainage before topdressing and a stepwise decrease in topdressing is a simple, low-cost management strategy to mitigate greenhouse gas emissions from rice fields supplemented with ALCS. (C) 2014 Elsevier B.V. All rights reserved.

分类号: Q14`X171

  • 相关文献

[1]Effects of N loading rate on CH4 and N2O emissions during cultivation and fallow periods from forage rice fields fertilized with liquid cattle waste. Riya, S.,Terada, A.,Hosomi, M.,Zhou, S.,Kobara, Y.,Sagehashi, M..

[2]Ecological intensification management of maize in northeast China: Agronomic and environmental response. Zhao, Rongrong,He, Ping,Xu, Xinpeng,Qiu, Shaojun,Zhao, Shicheng,Zhao, Rongrong,He, Ping,Xie, Jiagui,Johnston, Adrian M..

[3]Aboveground morphological traits do not predict rice variety effects on CH4 emissions. Zhang, Yi,Jiang, Yu,Wang, Xiaofei,Hang, Xiaoning,Zhang, Weijian,Li, Zhijie,Zhu, Xiangchen,Deng, Aixing,Zhang, Jun,Zhang, Weijian,Chen, Jin.

[4]Inhibitory Effects of 3,4-Dimethylpyrazole Phosphate on CH4 and N2O Emissions in Paddy Fields of Subtropical China. Yin, Shan,Zhang, Xianxian,Jiang, Zaidi,Zhu, Penghua,Li, Changsheng,Liu, Chunjiang,Yin, Shan,Zhang, Xianxian,Jiang, Zaidi,Zhu, Penghua,Li, Changsheng,Liu, Chunjiang,Yin, Shan,Zhu, Penghua,Liu, Chunjiang,Zhang, Xianxian,Jiang, Zaidi,Li, Changsheng. 2017

[5]Quantification for carbon footprint of agricultural inputs of grains cultivation in China since 1978. Huang, Xiaomin,Chen, Changqing,Chen, Mingzhou,Zhang, Weijian,Qian, Haoyu,Deng, Aixing,Zhang, Jun,Zhang, Weijian. 2017

[6]Equations to predict methane emissions from cows fed at maintenance energy level in pasture-based systems. Stergiadis, Sokratis,Zou, Caixia,Chen, Xianjiang,Wills, David,Yan, Tianhai,Stergiadis, Sokratis,Zou, Caixia,Chen, Xianjiang,Allen, Michelle.

[7]How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Smith, Pete,Haberl, Helmut,Erb, Karl-heinz,Lauk, Christian,Popp, Alexander,Harper, Richard,Tubiello, Francesco N.,de Siqueira Pinto, Alexandre,Bustamante, Mercedes,Jafari, Mostafa,Sohi, Saran,Masera, Omar,Boettcher, Hannes,Berndes, Goeran,Ahammad, Helal,Clark, Harry,Dong, Hongmin,Elsiddig, Elnour A.,Mbow, Cheikh,Ravindranath, Nijavalli H.,Rice, Charles W.,Abad, Carmenza Robledo,Abad, Carmenza Robledo,Romanovskaya, Anna,Sperling, Frank,Herrero, Mario,Herrero, Mario,House, Joanna I.,Rose, Steven.

[8]Chinese Food Security and Climate Change: Agriculture Futures. Ye, Liming,Tang, Huajun,Wu, Wenbin,Yang, Peng,Nelson, Gerald C.,Mason-D'Croz, Daniel,Palazzo, Amanda. 2014

[9]Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Wang, Hong-Yan,Cen, Kuang,Wang, Hong-Yan,Chen, Peng,Sun, Guo-Xin,Wen, Shi-Lin,Zhang, Lu.

[10]Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Liu, Yongbo,Li, Junsheng,Liu, Yongbo,Wei, Wei,Ma, Keping,Liu, Yongbo,Darmency, Henri,Liang, Yuyong. 2013

[11]Nitrogen gaseous emissions from farm effluent application to pastures and mitigation measures to reduce the emissions: a review. Li, J.,Luo, J.,Houlbrooke, D.,Lindsey, S.,Li, J.,Luo, J.,Shi, Y.,Wang, L.,Luo, J.,Li, Y..

[12]Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. Ye, Xinxin,Zhang, Ligan,Chai, Rushan,Tu, Renfeng,Gao, Hongjian,Li, Hongying,Zhang, Ligan. 2018

[13]A four-year record of methane emissions from irrigated rice fields in the Beijing region of China. Wang, ZY,Xu, YC,Li, Z,Guo, YX,Wassmann, R,Neue, HU,Lantin, RS,Buendia, LV,Ding, YP,Wang, ZZ. 2000

[14]Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Meng, Qingfeng,Chen, Xinping,Cui, Zhenling,Yue, Shanchao,Zhang, Fusuo,Sun, Qinping,Roemheld, Volker. 2012

[15]The Effects of Irrigation on Wheat Yield on a Global Scale. Zhao, Z.,Xu, J.,Zhao, Z.,Huang, X..

[16]Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies. Liao, Guojian,Wu, Qianhua,Feng, Renwei,Fan, Zhilian,Mo, Liangyu,Liao, Guojian,Wu, Qianhua,Feng, Renwei,Guo, Junkang,Wang, Ruigang,Xu, Yingming,Ding, Yongzhen,Feng, Renwei,Guo, Junkang,Wang, Ruigang,Xu, Yingming.

[17]Mitigation of Greenhouse Gas Emissions by Water Management in a Forage Rice Paddy Field Supplemented with Dry-Thermophilic Anaerobic Digestion Residue. Riya, S.,Katayama, M.,Takahashi, E.,Terada, A.,Hosomi, M.,Zhou, S..

[18]Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Hu, Pengjie,Li, Zhu,Yuan, Cheng,Huang, Jiexue,Huang, Yujuan,Luo, Yongming,Wu, Longhua,Ouyang, Younan,Luo, Yongming,Christie, Peter. 2013

[19]Short-term water management at early filling stage improves early-season rice performance under high temperature stress in South China. Kong, Leilei,Ashraf, Umair,Cheng, Siren,Rao, Gangshun,Mo, Zhaowen,Tian, Hua,Pan, Shenggang,Tang, Xiangru,Kong, Leilei,Ashraf, Umair,Cheng, Siren,Rao, Gangshun,Mo, Zhaowen,Tian, Hua,Pan, Shenggang,Tang, Xiangru.

[20]Effects of water management practices on residue decomposition and degradation of Cry1Ac protein from crop-wild Bt rice hybrids and parental lines during winter fallow season. Xiao, Manqiu,Dong, Shanshan,Li, Zhaolei,Ouyang, Dongxin,Fang, Changming,Song, Zhiping,Tang, Xu,Chen, Yi,Yang, Shengmao,Wu, Chunyan.

作者其他论文 更多>>