The beta subunit of glyceraldehyde 3-phosphate dehydrogenase is an important factor for maintaining photosynthesis and plant development under salt stress-Based on an integrative analysis of the structural, physiological and proteomic changes in chloroplasts in Thellungiella halophila

文献类型: 外文期刊

第一作者: Chang, Lili

作者: Chang, Lili;Guo, Anping;Wang, Xuchu;Chang, Lili;Guo, Anping;Jin, Xiang;Yang, Qian;Wang, Dan;Sun, Yong;Huang, Qixing;Wang, Limin;Peng, Cunzhi;Wang, Xuchu

作者机构:

关键词: Chloroplast;Comparative proteomics;Glyceraldehyde 3-phosphate dehydrogenase;Halophyte;Thellungiella halophila

期刊名称:PLANT SCIENCE ( 影响因子:4.729; 五年影响因子:5.132 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Thellungiella halophila, a new model halophyte, can survive under highly saline conditions. We performed comparative proteomics of chloroplasts from plants grown under different saline conditions. Seventy-five salt-responsive proteins were positively identified by mass spectrometry, which represented 43 unique ones. These proteins were categorized into 7 main pathways: light reaction, carbon fixation, energy metabolism, antenna proteins, cell structure, and protein degradation and folding. Saline conditions increased the abundance of proteins involved in photosynthesis, energy metabolism and cell structure. The results indicated that Thellungiella could withstand high salinity by maintaining normal or high photosynthetic capacity, reducing ROS production, as well as enhancing energy usage. Meanwhile, the ultrastructural and physiological data also agree with chloroplast proteomics results. Subsequently, the glyceraldehydes 3-phosphate dehydrogenase beta subunit (GAPB) involved in carbon fixation was selected and its role in salt tolerance was clarified by over-expressing it in Arabidopsis. ThGAPB-overexpressing plants had higher total chlorophyll contents, dry weights, water contents and survival rates than that of wild type plants. These results indicated that ThGAPB might improve plant salt tolerance by maintaining higher recycling rates of ADP and NADV(+) to decrease ROS production, helping to maintain photosynthetic efficiency and plant development under saline conditions. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

分类号: Q94

  • 相关文献

[1]Thellungiella halophila ThPIP1 gene enhances the tolerance of the transgenic rice to salt stress. Qiang Xiao-jing,Yu Guo-hong,Jiang Lin-lin,Sun Lin-lin,Zhang Shu-hui,Li Wei,Cheng Xian-guo,Sun Lin-lin,Zhang Shu-hui. 2015

[2]Illumina-based analysis of bacterial diversity related to halophytes Salicornia europaea and Sueada aralocaspica. Sh, Ying-wu,Lou, Kai,Li, Chun,Wang, Lei,Zhao, Zhen-yong,Zhao, Shuai,Tian, Chang-yan. 2015

[3]Illumina-Based Analysis of Endophytic and Rhizosphere Bacterial Diversity of the Coastal Halophyte &ITMesserschmidia sibirica&IT. Tian, Xue-Ying,Zhang, Cheng-Sheng. 2017

[4]Quantitative proteomics of Sesuvium portulacastrum leaves revealed that ion transportation by V-ATPase and sugar accumulation in chloroplast played crucial roles in halophyte salt tolerance. Yi, Xiaoping,Sun, Yong,Yang, Qian,Guo, Anping,Chang, Lili,Wang, Dan,Tong, Zheng,Jin, Xiang,Wang, Limin,Wang, Xuchu,Yi, Xiaoping,Guo, Anping,Chang, Lili,Wang, Xuchu,Yu, Jianlan,Jin, Wenhai.

[5]Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Wang, Dongyang,Wang, Haiyan,Han, Bing,Wang, Bin,Guo, Anping,Liu, Chongjing,Chang, Lili,Peng, Ming,Wang, Xuchu,Wang, Dongyang,Wang, Haiyan,Han, Bing,Wang, Bin,Liu, Chongjing,Wang, Xuchu,Zheng, Dong.

[6]The protective effects of vitamin C on apoptosis, DNA damage and proteome of pufferfish (Takifugu obscurus) under low temperature stress. Cheng, Chang-Hong,Liang, Hai-Yan,Luo, Sheng-Wei,Wang, An-Li,Ye, Chao-Xia. 2018

[7]Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety. Tan, Yanhua,Zhang, Jiaming,Guo, Anping,Wang, Xuchu,Tan, Yanhua,Yi, Xiaoping,Wang, Limin,Peng, Cunzhi,Sun, Yong,Wang, Dan,Zhang, Jiaming,Guo, Anping,Wang, Xuchu. 2016

[8]Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes. Yao, Yinan,Sun, Haiyan,Zhang, Xuejiang,Liu, Shengyi,Yao, Yinan,Xu, Fangsen.

[9]Comparative Proteomics of Rubber Latex Revealed Multiple Protein Species of REF/SRPP Family Respond Diversely to Ethylene Stimulation among Different Rubber Tree Clones. Tong, Zheng,Wang, Dan,Sun, Yong,Yang, Qian,Meng, Xueru,Wang, Limin,Wang, Xuchu,Feng, Weiqiang,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Wang, Xuchu,Li, Ling,Wurtele, Eve Syrkin,Li, Ling. 2017

[10]Separation and quantification of milk casein from different buffalo breeds. Li, Shanshan,Liu, Jianxin,Ren, Daxi,Li, Ling,Zeng, Qingkun,Li, Ling.

[11]Comparative proteomic and bioinformatic analysis of Theileria luwenshuni and Theileria uilenbergi. Zhang, Xiao,Li, Youquan,Chen, Ze,Liu, Zhijie,Ren, Qiaoyun,Yang, Jifei,Zhu, Xinquan,Guan, Guiquan,Liu, Aihong,Luo, Jianxun,Yin, Hong,Zhang, Xiao,Li, Youquan,Chen, Ze,Liu, Zhijie,Ren, Qiaoyun,Yang, Jifei,Zhu, Xinquan,Guan, Guiquan,Liu, Aihong,Luo, Jianxun,Yin, Hong,Zhang, Xiao,Li, Youquan,Chen, Ze,Liu, Zhijie,Ren, Qiaoyun,Yang, Jifei,Zhu, Xinquan,Guan, Guiquan,Liu, Aihong,Luo, Jianxun,Yin, Hong.

[12]Comparative Analysts of Flower Proteomes of Two Apple Genotypes Selected by their Different Resistance to Alternaria alternate. Zhang, Cai-xia,Zhang, Li-yi,Tian, Yi,Cong, Pei-hua,Zhang, Cai-xia,Zhang, Li-yi,Tian, Yi,Cong, Pei-hua.

[13]Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection. Chen, Hui,Xia, Zihao,Xie, Jipeng,Wu, Boming,Fan, Zaifeng,Zhou, Tao,Chen, Hui,Xia, Zihao,Xie, Jipeng,Wu, Boming,Fan, Zaifeng,Zhou, Tao,Cao, Yanyong,Li, Yiqing,Carr, John P..

[14]Comparative proteomics of Bt-transgenic and non-transgenic cotton leaves. Wang, Limin,Wang, Xuchu,Jin, Xiang,Jia, Ruizong,Huang, Qixing,Tan, Yanhua,Guo, Anping,Wang, Limin. 2015

[15]Comparative proteomics analysis provide novel insight into laminitis in Chinese Holstein cows. Dong, Shu-Wei,Zhang, Shi-Dong,Wang, Dong-Sheng,Wang, Hui,Shang, Xiao-Fei,Yan, Zuo-Ting,Yang, Zhi-Qiang,Dong, Shu-Wei,Yan, Ping. 2015

[16]Comparative proteomic analysis of hearts of adult SCNT Bama miniature pigs (Sus scrofa). Zhang Shu-shan,Dai Jian-jun,Wu Cai-feng,Zhang Ting-yu,Zhang De-fu,Zhang Shu-shan,Dai Jian-jun,Wu Cai-feng,Zhang Ting-yu,Zhang De-fu.

[17]Identification of potential virulence determinants associated H9N2 avian influenza virus PB2 E627K mutation by comparative proteomics. Qi, Wenbao,Su, Shuo,Huang, Lihong,Li, Huanan,Liao, Ming,Tian, Jin.

[18]Differential Protein Analysis of IPEC-J2 Cells Infected with Porcine Epidemic Diarrhea Virus Pandemic and Classical Strains Elucidates the Pathogenesis of Infection. Lin, Huixing,Chen, Lei,Ma, Zhe,Fan, Hongjie,Li, Bin,He, Kongwang,Fan, Hongjie.

[19]Systematic comparison of technical details in CBB methods and development of a sensitive GAP stain for comparative proteomic analysis. Wang, Xuchu,Wang, Dongyang,Wang, Dan,Wang, Haiyan,Chang, Lili,Yi, Xiaoping,Peng, Ming,Guo, Anping.

[20]Comparative protein profiles: Potential molecular markers from spermatozoa of Acipenseriformes (Chondrostei, Pisces). Li, Ping,Hulak, Martin,Rodina, Marek,Li, Zhi-Hua,Linhart, Otomar,Li, Ping,Li, Zhi-Hua,Sulc, Miroslav.

作者其他论文 更多>>