GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants

文献类型: 外文期刊

第一作者: Wang, Fang

作者: Wang, Fang;Chen, Hao-Wei;Li, Qing-Tian;Wei, Wei;Zhang, Wan-Ke;Ma, Biao;Zhang, Jin-Song;Chen, Shou-Yi;Li, Wei;Bi, Ying-Dong;Lai, Yong-Cai;Liu, Xin-Lei;Man, Wei-Qun

作者机构:

关键词: soybean;transcription factor;stress tolerance;root

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Soybean (Glycine max) is an important crop for oil and protein resources worldwide. The molecular mechanism of the abiotic stress response in soybean is largely unclear. We previously identified multiple stress-responsive WRKY genes from soybean. Here, we further characterized the roles of one of these genes, GmWRKY27, in abiotic stress tolerance using a transgenic hairy root assay. GmWRKY27 expression was increased by various abiotic stresses. Over-expression and RNAi analysis demonstrated that GmWRKY27 improves salt and drought tolerance in transgenic soybean hairy roots. Measurement of physiological parameters, including reactive oxygen species and proline contents, supported this conclusion. GmWRKY27 inhibits expression of a downstream gene GmNAC29 by binding to the W-boxes in its promoter region. The GmNAC29 is a negative factor of stress tolerance as indicated by the performance of transgenic hairy roots under stress. GmWRKY27 interacts with GmMYB174, which also suppresses GmNAC29 expression and enhances drought stress tolerance. The GmWRKY27 and GmMYB174 may have evolved to bind to neighbouring cis elements in the GmNAC29 promoter to co-reduce promoter activity and gene expression. Our study discloses a valuable mechanism in soybean for regulation of the stress response by two associated transcription factors. Manipulation of these genes should facilitate improvements in stress tolerance in soybean and other crops.

分类号: Q94

  • 相关文献

[1]Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Wei, Wei,Li, Qing-Tian,Zhang, Wan-Ke,Ma, Biao,Lin, Qing,Zhang, Jin-Song,Chen, Shou-Yi,Chu, Ya-Nan,Reiter, Russel J.,Yu, Xiao-Min,Zhu, Dan-Hua.

[2]Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. Chen, Zhijian,Yan, Wei,Sun, Lili,Tian, Jiang,Liao, Hong,Chen, Zhijian,Yan, Wei,Sun, Lili,Liao, Hong.

[3]Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses. Zhao, Shu-Ping,Lu, Dan,Chen, Zhan-Yu,Cui, Xi-Yan,Zhao, Shu-Ping,Yu, Tai-Fei,Zheng, Wei -Jun,Chai, Shou-Cheng,Zhang, Shuang-Xi,Ji, Yu-Jie. 2017

[4]Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Hong, B,Zhang, ZF,Tang, SM,Yi, YZ,Zhang, TY,Xu, WH.

[5]AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Xu, Jing,Tian, Yong-Sheng,Peng, Ri-He,Xiong, Ai-Sheng,Zhu, Bo,Jin, Xiao-Fen,Gao, Feng,Fu, Xiao-Yan,Yao, Quan-Hong,Xu, Jing,Hou, Xi-Lin. 2010

[6]Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). Ma, L.,Gao, L.,Mao, X.,Zhou, R.,Jia, J.,Zhou, E.. 2008

[7]A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Lu, Min,Ying, Sheng,Zhang, Deng-Feng,Shi, Yun-Su,Song, Yan-Chun,Wang, Tian-Yu,Li, Yu. 2012

[8]Functional genomics to study stress responses in crop legumes: progress and prospects. Kudapa, Himabindu,Ramalingam, Abirami,Nayakoti, Swapna,Varshney, Rajeev K.,Ramalingam, Abirami,Chen, Xiaoping,Liang, Xuanqiang,Varshney, Rajeev K.,Zhuang, Wei-Jian,Kahl, Guenter,Kahl, Guenter,Edwards, David,Varshney, Rajeev K.. 2013

[9]RsbV of Listeria monocytogenes contributes to regulation of environmental stress and virulence. Zhang, Zaichao,Meng, Qingling,Qiao, Jun,Yang, Lihong,Wang, Guanglei,Chen, Chuangfu,Meng, Qingling,Cai, Xuepeng,Zhang, Lijuan.

[10]Co-ordinate expression of glycine betaine synthesis genes linked by the FMDV 2A region in a single open reading frame in Pichia pastoris. Wang, Sanhong,Yao, Quanhong,Tao, Jianmin,Qiao, Yushan,Zhang, Zhen.

[11]Expression of a novel OSPGYRP (rice proline-, glycine- and tyrosine-rich protein) gene, which is involved in vesicle trafficking, enhanced cold tolerance in E-coli. Li, Hui,Yang, Jing,Wang, Yayu,Tu, Sansi,Zhu, Yingguo,Li, Yangsheng,Chen, Zhijun,Feng, Lingling. 2009

[12]Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Wang, Hongyan,Wang, Honglei,Shao, Hongbo,Shao, Hongbo,Tang, Xiaoli. 2016

[13]Genome-wide analysis of AP2/ERF transcription factor family in Zea mays. Zhou, Mei-Liang,Tang, Yi-Xiong,Wu, Yan-Min,Zhou, Mei-Liang.

[14]Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Zhang, Xia,Wang, Lei,Meng, Hui,Wen, Hongtao,Fan, Yunliu,Zhao, Jun.

[15]Trigger factor of Streptococcus suis is involved in stress tolerance and virulence. Wu, Tao,Ma, Hongwei,Lu, Ka,Ren, Wen,Liu, Zhengya,Qiu, Yinsheng,Chen, Huanchun,Wu, Tao,Zhao, Zhanqin,Chang, Haitao,Bei, Weicheng,Chen, Huanchun,Zhang, Lin,Zhao, Zhanqin.

[16]Overexpression of a glyoxalase gene, OsGly I, improves abiotic stress tolerance and grain yield in rice (Oryza sativa L.). Xiong, Fangjie,Yu, Xiaohong,Gong, Xiaoping,Liu, Yongsheng,Luo, Juntao,Jiang, Yudong,Kuang, Haochi,Gao, Bijun,Niu, Xiangli,Liu, Yongsheng,Liu, Yongsheng.

[17]Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles. Glaubitz, Ulrike,Li, Xia,Schaedel, Sandra,Erban, Alexander,Sulpice, Ronan,Kopka, Joachim,Hincha, Dirk K.,Zuther, Ellen,Li, Xia,Schaedel, Sandra,Sulpice, Ronan.

[18]ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Wang, Chunling,Lu, Guoqing,Hao, Yuqiong,Guo, Huiming,Zhao, Jun,Cheng, Hongmei,Wang, Chunling,Guo, Yan.

[19]The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Song, Alin,Li, Ping,Li, Zhaojun,Fan, Fenliang,Liang, Yongchao,Nikolic, Miroslav.

[20]Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. Xu, Zhao-Shi,Ni, Zhi-Yong,Li, Zhi-Yong,Li, Lian-Cheng,Chen, Ming,Gao, Dong-Yao,Yu, Xiu-Dao,Liu, Pei,Ma, You-Zhi.

作者其他论文 更多>>