Proteome Analysis Unravels Mechanism Underling the Embryogenesis of the Honeybee Drone and Its Divergence with the Worker (Apis mellifera lingustica)

文献类型: 外文期刊

第一作者: Fang, Yu

作者: Fang, Yu;Feng, Mao;Han, Bin;Qi, Yuping;Hu, Han;Fan, Pei;Huo, Xinmei;Meng, Lifeng;Li, Jianke

作者机构:

关键词: honeybee;worker;drone;embryo;proteome

期刊名称:JOURNAL OF PROTEOME RESEARCH ( 影响因子:4.466; 五年影响因子:4.352 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.

分类号: Q7`Q51

  • 相关文献

[1]Western honeybee drones and workers (Apis mellifera ligustica) have different olfactory mechanisms than eastern honeybees (Apis cerana cerana). Woltedji, Dereje,Song, Feifei,Zhang, Lan,Gala, Alemayehu,Han, Bin,Feng, Mao,Fang, Yu,Li, Jianke.

[2]Differential antennal proteome comparison of adult honeybee drone, worker and queen (Apis mellifera L.). Fang, Yu,Song, Feifei,Zhang, Lan,Aleku, Dereje Woltedji,Han, Bin,Feng, Mao,Li, Jianke.

[3]Changes of proteome and phosphoproteome trigger embryo-larva transition of honeybee worker (Apis mellifera ligustica). Gala, Alemayehu,Fang, Yu,Woltedji, Dereje,Zhang, Lan,Han, Bin,Feng, Mao,Li, Jianke.

[4]Differential expressions of nuclear proteomes between honeybee (Apis mellifera L.) queen and worker larvae: A deep insight into caste pathway decisions. Begna, Desalegn,Han, Bin,Feng, Mao,Fang, Yu,Li, Jianke.

[5]Mitochondrial proteins differential expression during honeybee (Apis mellifera L.) queen and worker larvae caste determination. Begna, Desalegn,Fang, Yu,Feng, Mao,Li, Jianke.

[6]Novel aspects of understanding molecular working mechanisms of salivary glands of worker honeybees (Apis mellifera) investigated by proteomics and phosphoproteomics. Feng, Mao,Fang, Yu,Han, Bin,Zhang, Lan,Lu, Xiaoshan,Li, Jianke.

[7]Proteome Analysis of Hemolymph Changes during the Larval to Pupal Development Stages of Honeybee Workers (Apis mellifera ligustica). Woltedji, Dereje,Fang, Yu,Han, Bin,Feng, Mao,Li, Rongli,Lu, Xiaoshan,Li, Jianke. 2013

[8]Proteome and phosphoproteome analysis of honeybee (Apis mellifera) venom collected from electrical stimulation and manual extraction of the venom gland. Li, Rongli,Zhang, Lan,Fang, Yu,Han, Bin,Lu, Xiaoshan,Zhou, Tiane,Feng, Mao,Li, Jianke,Zhang, Lan. 2013

[9]Proteomic Analysis Reveals Different Involvement of Embryo and Endosperm Proteins during Aging of Yliangyou 2 Hybrid Rice Seeds. Xu, Heng-Heng,Liu, Shu-Jun,Wang, Wei-Qing,Song, Song-Quan,Li, Ni,Moller, Ian M.. 2016

[10]Proteome changes associated with dormancy release of Dongxiang wild rice seeds. Xu, Heng-Heng,Liu, Shu-Jun,Wang, Wei-Qing,Song, Song-Quan,Song, Shun-Hua,Moller, Ian Max.

[11]Comparison of the colony development of two native bumblebee species Bombus ignitus and Bombus lucorum as candidates for commercial pollination in China. Wu, Jie,Peng, Wenjun,An, Jiandong,Huang, Jiaxing,Li, Jilian,Cai, Wanzhi. 2008

[12]Pollen phenolics and regulation of pollen foraging in honeybee colony. Liu, FL,Zhang, XW,Chai, JP,Yang, DR. 2006

[13]Proteome Comparison of Hypopharyngeal Gland Development between Italian and Royal Jelly-Producing Worker Honeybees (Apis mellifera L). Li Jianke,Feng Mao,Begna, Desalegn,Fang Yu,Zheng Aijuan. 2010

[14]Phosphoproteomic Analysis of Protein Phosphorylation Networks in the Hypopharyngeal Gland of Honeybee Workers (Apis mellifera ligustica). Qi, Yuping,Fan, Pei,Hao, Yue,Han, Bin,Fang, Yu,Feng, Mao,Cui, Ziyou,Li, Jianke,Fan, Pei,Cui, Ziyou,Cui, Ziyou.

[15]High Concentrations of the Alarm Pheromone Component, Isopentyl Acetate, Reduces Foraging and Dancing in Apis mellifera Ligustica and Apis cerana Cerana. Gong, Zhiwen,Wang, Chao,Dong, Shihao,Tan, Ken,Zhang, Xuewen,Wang, Yanhui,Hu, Zongwen,Tan, Ken.

[16]Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers. Han, Bin,Fang, Yu,Feng, Mao,Hu, Han,Hao, Yue,Ma, Chuan,Huo, Xinmei,Meng, Lifeng,Zhang, Xufeng,Wu, Fan,Li, Jianke.

[17]Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers. Han, Bin,Fang, Yu,Feng, Mao,Hu, Han,Qi, Yuping,Huo, Xinmei,Meng, Lifeng,Wu, Bin,Li, Jianke.

[18]Managed honeybee colony losses of the Eastern honeybee (Apis cerana) in China (2011-2014). Chen, Chao,Liu, Zhiguang,Chen, Xiao,Guo, Haikun,Wang, Huihua,Tang, Jiao,Shi, Wei,Chen, Chao,Liu, Zhiguang,Shi, Wei,Luo, Yuexiong,Xu, Zheng,Wang, Shunhai,Zhang, Xuewen,Dai, Rongguo,Gao, Jinglin.

[19]Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may). Wang, Pengfei,Ma, Chuanxi,Wang, Pengfei,Xia, Han,Zhang, Ye,Zhao, Shuzhen,Zhao, Chuanzhi,Hou, Lei,Li, Changsheng,Li, Aiqin,Wang, Xingjun. 2015

[20]Identifying Type of Maize with Terahertz Time-domain Spectroscopy. Sun, Jinhai,Sun, Jinhai,Shen, Jingling,Li, Ning,Lu, Meihong,Jia, Yan,Sun, Jinhai,Guo, Jinglun,Zhang, Jingmei,Sun, Jinhai. 2010

作者其他论文 更多>>