Isolation, structural analysis, and expression characteristics of the maize TIFY gene family

文献类型: 外文期刊

第一作者: Zhang, Zhongbao

作者: Zhang, Zhongbao;Li, Xianglong;Han, Meng;Wu, Zhongyi;Zhang, Zhongbao;Li, Xianglong;Han, Meng;Wu, Zhongyi;Yu, Rong;Han, Meng;Wu, Zhongyi

作者机构:

关键词: Maize;Abiotic and biotic stress;JAZ;ZIM;Expression behavior;Cis-elements

期刊名称:MOLECULAR GENETICS AND GENOMICS ( 影响因子:3.291; 五年影响因子:3.257 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: TIFY, previously known as ZIM, comprises a plant-specific family annotated as transcription factors that might play important roles in stress response. Despite TIFY proteins have been reported in Arabidopsis and rice, a comprehensive and systematic survey of ZmTIFY genes has not yet been conducted. To investigate the functions of ZmTIFY genes in this family, we isolated and characterized 30 ZmTIFY (1 TIFY, 3 ZML, and 26 JAZ) genes in an analysis of the maize (Zea mays L.) genome in this study. The 30 ZmTIFY genes were distributed over eight chromosomes. Multiple alignment and motif display results indicated that all ZmTIFY proteins share two conserved TIFY and Jas domains. Phylogenetic analysis revealed that the ZmTIFY family could be divided into two groups. Putative cis-elements, involved in abiotic stress response, phytohormones, pollen grain, and seed development, were detected in the promoters of maize TIFY genes. Microarray data showed that the ZmTIFY genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results indicated that ZmTIFY4, 5, 8, 26, and 28 were induced, while ZmTIFY16, 13, 24, 27, 18, and 30 were suppressed, by drought stress in the maize inbred lines Han21 and Ye478. ZmTIFY1, 19, and 28 were upregulated after infection by three pathogens, whereas ZmTIFY4, 13, 21, 23, 24, and 26 were suppressed. These results indicate that the ZmTIFY family may have vital roles in response to abiotic and biotic stresses. The data presented in this work provide vital clues for further investigating the functions of the genes in the ZmTIFY family.

分类号: Q7

  • 相关文献

[1]X1-homologous genes family as central components in biotic and abiotic stresses response in maize (Zea mays L.). Zhang, Zhongbao,Chen, Yajuan,Zhao, Dan,Li, Ruifen,Wang, Hongzhi,Zhang, Jiewei,Wei, Jianhua,Zhang, Zhongbao,Chen, Yajuan,Zhao, Dan,Li, Ruifen,Wang, Hongzhi,Zhang, Jiewei,Wei, Jianhua.

[2]Isolation, structural analysis, and expression characteristics of the maize (Zea mays L.) hexokinase gene family. Zhang, Zhongbao,Zhang, Jiewei,Chen, Yajuan,Li, Ruifen,Wang, Hongzhi,Ding, Liping,Wei, Jianhua,Zhang, Zhongbao,Zhang, Jiewei,Chen, Yajuan,Li, Ruifen,Wang, Hongzhi,Ding, Liping,Wei, Jianhua.

[3]Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Zhang, Zhongbao,Zhang, Jiewei,Chen, Yajuan,Li, Ruifen,Wang, Hongzhi,Wei, Jianhua.

[4]Selection of reliable reference genes for quantitative real-time PCR gene expression analysis in Jute (Corchorus capsularis) under stress treatments. Niu, Xiaoping,Qi, Jianmin,Zhang, Gaoyang,Xu, Jiantang,Tao, Aifen,Fang, Pingping,Zhang, Gaoyang,Su, Jianguang. 2015

[5]MdMYB9 and MdMYB11 are Involved in the Regulation of the JA-Induced Biosynthesis of Anthocyanin and Proanthocyanidin in Apples. An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Liu, Xiao-Juan,Liu, Dan-Dan,Xie, Xing-Bin,Hao, Yu-Jin,An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Liu, Xiao-Juan,Liu, Dan-Dan,Xie, Xing-Bin,Hao, Yu-Jin,An, Xiu-Hong,Tian, Yi,Chen, Ke-Qin,Liu, Xiao-Juan,Liu, Dan-Dan,Xie, Xing-Bin,Hao, Yu-Jin,An, Xiu-Hong,Tian, Yi,Cheng, Cun-Gang,Cong, Pei-Hua.

[6]Jasmonate-responsive transcription factors regulating plant secondary metabolism. Zhou, Meiliang,Zhou, Meiliang,Memelink, Johan.

[7]Phylogeny and Expression Analyses Reveal Important Roles for Plant PKS III Family during the Conquest of Land by Plants and Angiosperm Diversification. Xie, Lulu,Zhang, Shifan,Zhang, Shujiang,Li, Fei,Zhang, Hui,Li, Guoliang,Wei, Yunxiao,Sun, Rifei,Liu, Pingli,Zhu, Zhixin. 2016

[8]The intergenic region of the maize defensin-like protein genes Def1 and Def2 functions as an embryo-specific asymmetric bidirectional promoter. Liu, Xiaoqing,Yang, Wenzhu,Li, Ye,Li, Suzhen,Zhou, Xiaojin,Zhao, Qianqian,Fan, Yunliu,Lin, Min,Chen, Rumei,Li, Suzhen.

[9]Construction and characterization of a bacterial artificial chromosome library of the maize inbred line Qi319. Mu, Chun Hua,Zhang, Fa Jun,Li, Wen Cai,Lu, Shou Ping,Meng, Zhao Dong,Liu, Xia,Mu, Chun Hua,Liu, Xia,Yang, Yu,Li, Guang Cun. 2016

[10]Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may). Wang, Pengfei,Ma, Chuanxi,Wang, Pengfei,Xia, Han,Zhang, Ye,Zhao, Shuzhen,Zhao, Chuanzhi,Hou, Lei,Li, Changsheng,Li, Aiqin,Wang, Xingjun. 2015

[11]ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis. Yu, Yanli,Li, Yanjiao,Zhao, Meng,Li, Wencai,Sun, Qi,Li, Wenlan,Meng, Zhaodong,Jia, Fengjuan,Jia, Fengjuan,Li, Nana. 2017

[12]Effects of pollination-prevention on leaf senescence and post-silking nitrogen accumulation and remobilization in maize hybrids released in the past four decades in China. Guo, Song,Chen, Fanjun,Yuan, Lixing,Mi, Guohua,Guo, Song.

[13]Determination of 16 Mycotoxins in Maize by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Li, Xia,Liu, Bin,Wang, Fengen,Ma, Xinfeng,Li, Zengmei,Guo, Dongliang,Wang, Yutao,Deng, Ligang,Zhang, Shuqiu,Wan, Fachun. 2018

[14]Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Zhao, L.,Wang, Q. Y.,Liu, H. J.,Zhang, C. X.,Li, X. H.. 2015

[15]Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. Feng, Shangguo,Yang, Yanjun,Xu, Mingfeng,Wang, Huizhong,Shen, Chenjia,Yue, Runqing,Zhang, Lei. 2015

[16]Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,He, Shiying. 2017

[17]The changes of organelle ultrastructure and Ca2+ homeostasis in maize mesophyll cells during the process of drought-induced leaf senescence. Ma, Yuan-Yuan,Guo, Xiu-Lin,Liu, Zi-Hui,Ma, Yuan-Yuan,Shao, Hong-Bo,Shao, Hong-Bo,Liu, Bin-Hui. 2011

[18]Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Li, Y,Shi, YS,Cao, YS,Wang, TY. 2004

[19]Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Ge, Min,Jiang, Lu,Wang, Yuancong,Lv, Yuanda,Zhou, Ling,Liang, Shuaiqiang,Bao, Huabin,Zhao, Han,Liu, Yuhe. 2018

[20]Maize production emulation system based on cooperative models. Li, Shijuan,Zhu, Yeping. 2008

作者其他论文 更多>>