De novo transcriptome assembly of Ipomoea nil using Illumina sequencing for gene discovery and SSR marker identification

文献类型: 外文期刊

第一作者: He, Bin

作者: He, Bin;Yan, Lang;Tan, Xuemei;Zhang, Yizheng;Tao, Xiang;Li, Ming

作者机构:

关键词: Ipomoea nil;Transcriptome;Flowering;Anthocyanins;Microsatellites

期刊名称:MOLECULAR GENETICS AND GENOMICS ( 影响因子:3.291; 五年影响因子:3.257 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Ipomoea nil is widely used as an ornamental plant due to its abundance of flower color, but the limited transcriptome and genomic data hinder research on it. Using illumina platform, transcriptome profiling of I. nil was performed through high-throughput sequencing, which was proven to be a rapid and cost-effective means to characterize gene content. Our goal is to use the resulting information to facilitate the relevant research on flowering and flower color formation in I. nil. In total, 268 million unique illumina RNA-Seq reads were produced and used in the transcriptome assembly. These reads were assembled into 220,117 contigs, of which 137,307 contigs were annotated using the GO and KEGG database. Based on the result of functional annotations, a total of 89,781 contigs were assigned 455,335 GO term annotations. Meanwhile, 17,418 contigs were identified with pathway annotation and they were functionally assigned to 144 KEGG pathways. Our transcriptome revealed at least 55 contigs as probably flowering-related genes in I. nil, and we also identified 25 contigs that encode key enzymes in the phenylpropanoid biosynthesis pathway. Based on the analysis relating to gene expression profiles, in the phenylpropanoid biosynthesis pathway of I. nil, the repression of lignin biosynthesis might lead to the redirection of the metabolic flux into anthocyanin biosynthesis. This may be the most likely reason that I. nil has high anthocyanins content, especially in its flowers. Additionally, 15,537 simple sequence repeats (SSRs) were detected using the MISA software, and these SSRs will undoubtedly benefit future breeding work. Moreover, the information uncovered in this study will also serve as a valuable resource for understanding the flowering and flower color formation mechanisms in I. nil.

分类号: Q7

  • 相关文献

[1]Transcriptome Sequencing Determined Flowering Pathway Genes in Aechmea fasciata Treated with Ethylene. Li, Zhiying,Wang, Jiabin,Zhang, Xuequan,Lei, Ming,Fu, Yunliu,Zhang, Jing,Wang, Zhi,Xu, Li,Li, Zhiying,Wang, Jiabin,Zhang, Xuequan,Lei, Ming,Fu, Yunliu,Zhang, Jing,Wang, Zhi,Xu, Li.

[2]De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering. Chen, Yue,Sun, Chongbo,Lin, Renan,Zhao, Zhuangliu,Shen, Qi,Shen, Chenjia. 2017

[3]Transcriptome analysis of 'Sijihua' longan (Dimocarpus longan L.) based on next-generation sequencing technology. Zhang, H. N.,Shi, S. Y.,Li, W. C.,Shu, B.,Liu, L. Q.,Xie, J. H.,Wei, Y. Z..

[4]Transcriptome Analysis Identifies Key Candidate Genes Mediating Purple Ovary Coloration in Asiatic Hybrid Lilies. Xu, Leifeng,Yang, Panpan,Yuan, Suxia,Feng, Yayan,Xu, Hua,Cao, Yuwei,Ming, Jun,Yang, Panpan. 2016

[5]A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. Liu, Xiaohui,Lu, Tingting,Yu, Shuliang,Li, Ying,Huang, Yuchen,Huang, Tao,Zhang, Lei,Zhu, Jingjie,Zhao, Qiang,Fan, Danlin,Mu, Jie,Shangguan, Yingying,Feng, Qi,Guan, Jianping,Ying, Kai,Zhang, Yu,Lin, Zhixin,Sun, Zongxiu,Qian, Qian,Lu, Yuping,Han, Bin.

[6]Overexpression of PvPin1, a Bamboo Homolog of PIN1-Type Parvulin 1, Delays Flowering Time in Transgenic Arabidopsis and Rice. Zheng, Zhigang,Yang, Xiaoming,Zhu, Longfei,Wei, Hantian,Lin, Xinchun,Fu, Yaping. 2017

[7]A model for photothermal responses of flowering in rice .1. Model description and parameterization. Yin, XY,Kropff, MJ,Horie, T,Nakagawa, H,Centeno, HGS,Zhu, DF,Goudriaan, J. 1997

[8]Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering. Li, Yun-He,Wu, Qing-Song,Liu, Sheng-Hui,Zhang, Hong-Na,Zhang, Zhi,Sun, Guang-Ming,Li, Yun-He,Huang, Xia. 2016

[9]OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. Jin, Xiao-Fen,Xiong, Ai-Sheng,Peng, Ri-He,Liu, Jin-Ge,Gao, Feng,Yao, Quan-Hong,Chen, Jian-Min.

[10]Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean. Zhong, Xiaofang,Xv, Jiaohui,Wu, Hanying,Liu, Bin,Li, Hongyu,Dai, Xi.

[11]Molecular cloning and functional analysis of one ZEITLUPE homolog GmZTL3 in soybean. Zhang, Xiao-Mei,Fu, Yong-Fu,Xue, Zheng-Gang,Chen, Xin-Jian,Lei, Chen-Fang,Chen, Xin-Jian.

[12]A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis. He, Reqing,Li, Xinmei,Zhong, Ming,Yan, Jindong,Wu, Dan,Sun, Mengsi,Tang, Dongying,Lin, Jianzhong,Liu, Xuanming,Zhao, Xiaoying,Ji, Ronghuan,Li, Hongyu,Liu, Bin,Li, Xu,Liu, Hongtao,Wang, Qin,Lin, Chentao.

[13]Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Lu, Y,Wassmann, R,Neue, HU,Huang, C.

[14]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[15]Exogenous gibberellic acid increases the fruit weight of 'Comte de Paris' pineapple by enlarging flesh cells without negative effects on fruit quality. Li, Yun-He,Zou, Ming-Hong,Zhang, Zhi,Sun, Guang-Ming,Li, Yun-He,Sun, Guang-Ming,Wu, Yong-Jie,Wu, Bei.

[16]ZmSOC1, an MADS-Box Transcription Factor from Zea mays, Promotes Flowering in Arabidopsis. Zhao, Suzhou,Luo, Yanzhong,Xu, Miaoyun,Zhang, Lan,Fan, Yunliu,Wang, Lei,Zhao, Suzhou,Wang, Lei,Zhang, Zhanlu,Wang, Weibu,Zhao, Yangmin. 2014

[17]Expression profiles of five FT-like genes and functional analysis of PhFT-1 in a Phalaenopsis hybrid. Zhou, Shushan,Jiang, Li,Guan, Shuangxue,Gao, Yongxia,Wang, Guangdong,Gao, Qinghua,Duan, Ke. 2018

[18]Photoperiodism dynamics during the domestication and improvement of soybean. Zhang, Sheng-Rui,Wang, Zhongyu,Ren, Yao,Liu, Jun,Liu, Bin,Wang, Huan,Niu, Lifang,Ren, Yao. 2017

[19]The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. Zhang, Lichao,Liu, Guoxiang,Jia, Jizeng,Zhao, Guangyao,Xia, Chuan,Zhang, Lina,Li, Fu,Zhang, Qiang,Dong, Chunhao,Han, Longzhi,Guo, Xiuping,Zhang, Xin,Liu, Xu,Kong, Xiuying,Wu, Jinxia,Gao, Shuangcheng. 2016

[20]LC2 and OsVIL2 Promote Rice Flowering by Photoperoid-Induced Epigenetic Silencing of OsLF. Wang, Jun,Xue, Hong-Wei,Hu, Jiang,Qian, Qian. 2013

作者其他论文 更多>>