Cloning and expression analysis of four DELLA genes in peanut

文献类型: 外文期刊

第一作者: An, J.

作者: An, J.;Zhao, Y. X.;Wang, X. J.;An, J.;Hou, L.;Li, C.;Wang, C. X.;Xia, H.;Zhao, C. Z.;Li, C. S.;Wang, X. J.;Li, C.;Zheng, Y. X.

作者机构:

关键词: Arachis hypogaea;DELLA;gene cloning;expression analysis;drought and salt stress

期刊名称:RUSSIAN JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:1.481; 五年影响因子:1.608 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Peanut (Arachis hypogaea L.), as a source of oil and protein, is the second-most important grain legume cultivated in the world. Peanut is a relatively drought-tolerant crop; however, the molecular biology research of peanut is far behind other crops; the molecular mechanisms of its stress resistance are poorly understood. DELLA proteins, negative regulators of gibberellin signaling pathway in plants, promote survival of plants in adverse environments. In this study, four DELLA homologue genes were isolated using peanut transcriptome sequences. Molecular phylogenetic analysis revealed that these four AhDELLAs fall into three distinct groups: AhDELLA1 and AhDELLA2 clustered into two distinct groups, while AhDELLA3 and AhDELLA4 were in one group, which was separated from other DELLAs. qRT-PCR results showed that these four DELLA genes were expressed differentially in various peanut tissues. The AhDELLA1 and AhDELLA2 genes were expressed ubiquitously in different tissues. AhDELLA3 and AhDELLA4 showed much higher expression level in flowers and seeds as compared with other organs. The expression of four AhDELLA genes was temporally induced by PEG 6000 treatment. The AhDELLA3 and AhDELLA4 transcripts were significantly induced by NaCl treatment, while the expression of AhDELLA1 and AhDELLA2 did not change much under salt stress. The possible role of DELLA proteins in peanut development and responses to abiotic stresses is discussed.

分类号: Q94

  • 相关文献

[1]Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea. Chen, Si-Long,Huang, Jia-Quan,Lei, Yong,Zhang, Yue-Ting,Ren, Xiao-Ping,Chen, Yu-Ning,Jiang, Hui-Fang,Yan, Li-Ying,Liao, Bo-Shou,Chen, Si-Long,Li, Yu-Rong,Chen, Si-Long.

[2]Cloning and differential expression analysis of defensin gene Cldef2.2 from watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Zhang, M.,Yang, X. P.,Xu, J. H.,Liu, G.,Yao, X. F.,Li, P. F.,Zhu, L. L..

[3]Isolation and Expression Analysis of Fructokinase Genes from Citrus. Qin, QP,Zhang, SL,Chen, JW,Xie, M,Jin, YF,Chen, KS,Asghar, S.

[4]Genome-wide identification of pear HD-Zip gene family and expression patterns under stress induced by drought, salinity, and pathogen. Wang, Hong,Lin, Jing,Li, Xiao Gang,Chang, Youhong.

[5]Cloning and characterization of CaGID1s and CaGAI in Capsicum annuum L.. Cao Ya-cong,Sul Xiao-lei,Zhang Zhen-xian,Cao Ya-cong,Zhang Zheng-hai,Wang Li-hao,Zhang Bao-xi. 2016

[6]Characterization of seed fatty acid accumulation in DELLA mutant lines of Arabidopsis. Li, Zhilan,Jiang, Yuxiao,Jiang, Chiyu,Zhou, Longhua,Jiang, Lixi,Hua, Shuijin,Chen, Xiaoyang,Ren, Yun.

[7]Identification of Expressed Resistance Gene Analogs from Peanut (Arachis hypogaea L.) Expressed Sequence Tags. Liu, Zhanji,Feng, Suping,Pandey, Manish K.,Chen, Xiaoping,Culbreath, Albert K.,Liu, Zhanji,Feng, Suping,Pandey, Manish K.,Varshney, Rajeev K.,Chen, Xiaoping,Guo, Baozhu. 2013

[8]Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development. Zhang, Ye,Wang, Pengfei,Xia, Han,Zhao, Chuanzhi,Hou, Lei,Li, Changsheng,Zhao, Shuzhen,Wang, Xingjun,Zhang, Ye,Gao, Chao,Wang, Xingjun. 2016

[9]Isolation and Characterization of Putative Acetyl-CoA Carboxylases in Arachis hypogaea L.. Li, Meng-Jun,Xia, Han,Zhao, Chuan-Zhi,Li, Ai-Qin,Li, Chang-Sheng,Bi, Yu-Ping,Wan, Shu-Bo,Wang, Xing-Jun. 2010

[10]Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Zhao, Shuzhen,Li, Aiqin,Li, Changsheng,Xia, Han,Zhao, Chuanzhi,Zhang, Ye,Hou, Lei,Wang, Xingjun. 2017

[11]Isolation of Arachis hypogaea Na+/H+ antiporter and its expression analysis under salt stress. Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo,Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo,Xing, Jinyi,Wang, Baozhi,Jia, Kunhang,Wan, Shubo,Meng, Jingjing,Guo, Feng,Li, Xinguo. 2011

[12]Isolation and analysis of differentially expressed genes from peanut in response to challenge with Ralstonia solanacearum. Ding, Yu Fei,Wang, Chuan Tang,Tang, Yue Yi,Wang, Xiu Zhen,Wu, Qi,Yu, Hong Tao,Zhang, Jian Cheng,Cui, Feng Gao,Song, Guo Sheng,Yu, Shan Lin,Hu, Dong Qing,Gao, Hua Yuan. 2012

[13]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

[14]Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Chen, Hua,Cai, Tiecheng,Deng, Ye,Zhuang, Weijian,Zhang, Chong,Chen, Hua,Cai, Tiecheng,Deng, Ye,Zhuang, Ruirong,Zhang, Ning,Zeng, Yuanhuan,Zheng, Yixiong,Zhuang, Weijian,Zheng, Yixiong,Tang, Ronghua,Pan, Ronglong,Pan, Ronglong. 2017

[15]Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Jiang, Huifang,Ren, Xiaoping,Chen, Yuning,Huang, Li,Zhou, Xiaojing,Huang, Jiaquan,Liao, Boshou,Froenicke, Lutz,Yu, Jiujiang,Guo, Baozhu. 2013

[16]Characterization of a New Strain of Capsicum chlorosis virus from Peanut (Arachis hypogaea L.) in China. Chen, K.,Xu, Z.,Yan, L.,Wang, G..

[17]Applications of xerophytophysiology in plant production - peanut cultivation with the AnM method. Xu, Hui-lian,Xu, Rongyan,Qin, Feifei,Morita, Shigenori,Wang, Jingshan,Wang, Minglun,Qin, Feifei. 2009

[18]Identification and expression analysis of genes responsive to drought stress in peanut. Hou, L.,Liu, W.,Li, Z.,Huang, C.,Fang, X. L.,Wang, Q.,Liu, X.,Hou, L.,Liu, W.,Li, Z.,Huang, C.,Fang, X. L.,Wang, Q.,Liu, X.,Fang, X. L..

[19]Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Tang, G. Y.,Xu, P. L.,Shan, L.,Shao, F. X.,Liu, Z. J..

[20]An efficient method for total RNA extraction from peanut seeds. Huang, C.,Picimbon, J. F.,Li, H. Q.,Li, Z.,Liu, Q.,Liu, W.,Huang, C.,Picimbon, J. F.,Li, H. Q.,Li, Z.,Liu, Q.,Liu, W..

作者其他论文 更多>>