Identification of quantitative trait loci associated with tolerance to low potassium and related ions concentrations at seedling stage in rice (Oryza sativa L.)

文献类型: 外文期刊

第一作者: Fang, Yunxia

作者: Fang, Yunxia;Fang, Yunxia;Zhang, Xiaoqin;Lu, Wenyi;Pan, Jiangjie;Xue, Dawei;Wu, Weiming;Hu, Jiang;Guo, Longbiao;Zeng, Dali;Xue, Dawei;Jiang, Hua

作者机构:

关键词: Rice;QTL;Low potassium stress;Ions concentrations

期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Potassium (K) is one of the essential macronutrients of rice growth and eventually affects yields. To investigate the genetics of low K tolerance and related ions concentrations at the seedling stage in rice, quantitative trait loci (QTLs) were detected using a doubled haploid population derived from a cross between a japonica cultivar CJ06 and an indica accession TN1. A total of 96 QTLs were identified with phenotypic variation 5-29 %, including 30 QTLs found to be associated with shoot height, root length, shoot dry weight, root dry weight and total dry weight under the control (40 mg L-1 K+) and low K stress conditions (4 mg L-1 K+), 14 putative QTLs associated with the K tolerance coefficient of all examined traits and synthetic appraisal index, and 52 QTLs controlling four ions (Na+, K+, Ca2+ and Mg2+) concentrations of root and shoot under two treatments. The results indicated that low K tolerance and related ions concentrations were quantitatively inherited, and the detected major QTLs may be useful for marker-assistant selection.

分类号: S311

  • 相关文献

[1]A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Hu, Jiang,Wang, Yuexing,Fang, Yunxia,Xu, Jie,Yu, Haiping,Shi, Zhenyuan,Pan, Jiangjie,Zhang, Dong,Zhu, Li,Dong, Guojun,Guo, Longbiao,Zeng, Dali,Zhang, Guangheng,Xie, Lihong,Qian, Qian,Zeng, Longjun,Kang, Shujing,Xiong, Guosheng,Qian, Qian,Li, Jiayang,Li, Jiayang. 2015

[2]Bayesian dissection for genetic architecture of traits associated with nitrogen utilization efficiency in rice. Yang, Runqing,Piao, Zhongze,Li, Maobai,Zhang, Jianming,Wang, Hui,Li, Peide,Zhu, Chunmei,Luo, Zhixiang,Lee, Jungro. 2009

[3]QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice. Xia, Xiuzhong,Zhang, Zongqiong,Nong, Baoxuan,Zeng, Yu,Deng, Guofu,Li, Danting,Xiong, Faqian,Wu, Yanyan,Gao, Ju. 2017

[4]Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Jiang, L,Liu, SJ,Hou, MY,Tang, JY,Chen, LM,Zhai, HQ,Wan, JM. 2006

[5]Mapping QTL with Main Effect, Digenic Epistatic and QTL x Environment Interactions of Panicle Related Traits in Rice (Oryza sativa). Leng, Yujia,Huang, Lichao,Chen, Long,Ren, Deyong,Yang, Yaolong,Zhang, Guangheng,Hu, Jiang,Zhu, Li,Guo, Longbiao,Qian, Qian,Zeng, Dali,Leng, Yujia,Lin, Yongjun,Leng, Yujia,Lin, Yongjun,Xue, Dawei. 2017

[6]QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Luo, Xiao,Lee, Hyun-Sook,Kim, Dong-Min,Balkunde, Sangshetty,Kang, Ju-Won,Ahn, Sang-Nag,Ji, Shi-Dong,Yuan, Ping-Rong. 2013

[7]Dissection of combining ability for yield and related traits using introgression lines in the background of a key restorer line in rice (Oryza sativa L.). Xiang, Chao,Zhang, Hongjun,Wang, Jie,Wang, Wensheng,Gao, Yongming,Wang, Hui,Xia, Jiafa,Ye, Guoyou.

[8]Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length. Zhang, Anpeng,Liu, Chaolei,Chen, Guang,Hong, Kai,Gao, Yang,Tian, Peng,Peng, Youlin,Zhang, Bin,Ruan, Banpu,Jiang, Hongzhen,Guo, Longbiao,Qian, Qian,Gao, Zhenyu.

[9]Genetic Overlap in the Quantitative Resistance of Rice at the Seedling and Adult Stages to Xanthomonas oryzae pv. oryzae. Zhou, Yong-Li,Xie, Xue-Wen,Xu, Mei-Rong,Zang, Jin-Ping,Zhu, Ling-Hua,Xu, Jian-Long,Li, Zhi-Kang,Li, Zhi-Kang.

[10]Identification of QTLs for rice flower opening time in two environments. Zhang, Meng,Zhang, Huali,Dai, Dongqing,Li, Ximing,Chen, Junyu,Ma, Liangyong,Bao, Jinsong.

[11]The way to a more precise sheath blight resistance QTL in rice. Zeng, Yuxiang,Ji, Zhijuan,Yang, Changdeng.

[12]Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Chen, Mingliang,Luo, Ju,Shao, Gaoneng,Wei, Xiangjin,Tang, Shaoqing,Sheng, Zhonghua,Song, Jian,Hu, Peisong,Chen, Mingliang.

[13]Association Mapping and Marker Development of Genes for Starch Lysophospholipid Synthesis in Rice. Tong Chuan,Bao Jin-Song,Tong Chuan,Liu Lei,Waters, Daniel L. E.. 2016

[14]Identification of QTLs associated with physiological nitrogen use efficiency in rice. Cho, Young-Il,Jiang, Wenzhu,Chin, Joong-Hyoun,Piao, Zhongze,Cho, Yong-Gu,McCouch, Susan R.,Koh, Hee-Jong. 2007

[15]QTL detection of amino acid content in grains of rice using advanced backcross introgression lines. Cheng, Li-Rui,Luo, Cheng-Gang,Xu, Jian-Long. 2013

[16]Identification of Quantitative Trait Loci for Lipid Metabolism in Rice Seeds. Ying, Jie-Zheng,Shan, Jun-Xiang,Gao, Ji-Ping,Zhu, Mei-Zhen,Shi, Min,Lin, Hong-Xuan,Ying, Jie-Zheng,Shan, Jun-Xiang,Gao, Ji-Ping,Zhu, Mei-Zhen,Shi, Min,Lin, Hong-Xuan,Ying, Jie-Zheng. 2012

[17]Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. Zhang, Bin,Ye, Weijun,Ren, Deyong,Tian, Peng,Peng, Youlin,Gao, Yang,Ruan, Banpu,Wang, Li,Zhang, Guangheng,Guo, Longbiao,Qian, Qian,Gao, Zhenyu. 2015

[18]Efficient QTL detection for heading date in backcross inbred line and F-2 population derived from the same rice cross. Lu, Bingyue,Xie, Kun,Yang, Chunyan,Zhang, Long,Wu, Tao,Li, Linfang,Liu, Xi,Jiang, Ling,Wan, Jianmin,Wan, Jianmin. 2011

[19]QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study. Zhang, Jian,Chen, Kai,Pang, Yunlong,Naveed, Shahzad Amir,Zhao, Xiuqin,Wang, Xiaoqian,Wang, Yun,Li, Zhikang,Xu, Jianlong,Chen, Kai,Li, Zhikang,Xu, Jianlong,Dingkuhn, Michael,Dingkuhn, Michael,Dingkuhn, Michael,Pasuquin, Julie,Li, Zhikang,Xu, Jianlong. 2017

[20]QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.). Qiu Ling,Lu Xian-jun,Ren Juan-sheng,Wu Xian-ting,Su Xiang-wen,Ren Guang-jun,Zeng Li-hua,Qiu Ling,Gao Yong-ming. 2016

作者其他论文 更多>>