Expression of Paenibacillus polymyxa beta-1,3-1,4-glucanase in Streptomyces lydicus A01 improves its biocontrol effect against Botrytis cinerea

文献类型: 外文期刊

第一作者: Li, Jinjin

作者: Li, Jinjin;Liu, Weicheng;Dong, Dan;Liu, Ting;Zhang, Taotao;Lu, Caige;Liu, Dewen;Zhang, Dianpeng;Wu, Huiling;Luo, Lijin

作者机构:

关键词: beta-1;3-1;4-Glucanase;Antifungal activity;Paenibacillus polymyxa;Streptomyces lydicus;Natamycin

期刊名称:BIOLOGICAL CONTROL ( 影响因子:3.687; 五年影响因子:3.962 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Streptomyces lydicus strain A01, which can produce natamycin and chitinase, has a significant inhibition effect on gray mold disease caused by Botrytis cinerea. However, it has no detectable glucanase activity. Strain A21 isolated from the snow covered high altitude area in Tibet, China, also has a high antagonistic activity against B. cinerea. It displayed an obvious halo on lichen polysaccharides plates by congo red staining, indicating a strong glucanase activity. A21 was identified as Paenibacillus polymyxa using 16S rDNA gene analysis and biochemical and physiological analysis. To obtain the synergistic antifungal effects of natamycin, chitinase, and glucanases on B. cinerea, this study transformed the beta-1,3-1,4-glucanase gene from P. polymyxa A21 to S. lydicus A01. The engineered S. lydicus AG01 showed substantially high glucanase activity, and had similar natamycin production and chitinase activity as the wild-type strain A01. Compared to the wild-type strain A01, the antifungal effects of S. lydicus AG01 on B. cinerea, including inhibition of spore germination and mycelial growth, were highly improved. The improved biocontrol effect of S. lydicus AG01 is likely attributed to the heterologous expression of glucanase from P. polymyxa, which acted synergistically with natamycin and chitinase to increase the antifungal activity of the strain. (C) 2015 The Authors. Published by Elsevier Inc.

分类号: S476

  • 相关文献

[1]Codon optimization of Bacillus licheniformis beta-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Teng, Da,Fan, Ying,Yang, Ya-lin,Tian, Zi-gang,Luo, Jin,Wang, Jian-hua.

[2]IDENTIFICATION OF AN ANTIFUNGAL METABOLITE PRODUCED BY A POTENTIAL BIOCONTROL ACTINOMYCES STRAIN A01. Lu, Cai Ge,Liu, Wei Cheng,Qiu, Ji Yan,Liu, Ting,Liu, De Wen,Lu, Cai Ge,Wang, Hui Min. 2008

[3]Antifungal peptide produced by Paenibacillus polymyxa BRF-1 isolated from soybean rhizosphere. Chen, Xueli,Wang, Guanghua,Xu, Meina,Jin, Jian,Liu, Xiaobing,Chen, Xueli. 2010

[4]Efficient transformation and expression of the glucanase gene from Bacillus megaterium in the biocontrol strain Streptomyces lydicus A02. Wu, Huiling,Dong, Dan,Li, Jinjin,Liu, Weicheng,Liu, Ting,Zhang, Taotao,Tian, Zhaofeng. 2014

[5]Heterologous coexpression of Vitreoscilla hemoglobin and Bacillus megaterium glucanase in Streptomyces lydicus A02 enhanced its production of antifungal metabolites. Wu, Huiling,Li, Jinjin,Dong, Dan,Liu, Ting,Zhang, Taotao,Zhang, Dianpeng,Liu, Weicheng.

[6]Cloning of beta-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Teng, Da,Wang, Jian-Hua,Fan, Ying,Yang, Ya-lin,Tian, Zi-gang,Luo, Jin,Yang, Guan-pin,Zhang, Fan.

[7]The Endo-beta-1,4-Glucanase of Bacillus amyloliquefaciens Is Required for Optimum Endophytic Colonization of Plants. Fan, Xiaojing,Cai, Xueqing,Zou, Huasong,Hu, Fangping,Yang, Ruixian,Qiu, Sixin.

[8]Improvement of anti-nutritional effect resulting from beta-glucanase specific expression in the parotid gland of transgenic pigs. Guan, Li-zeng,Zhao, Shuai,Sun, Yu-ping,Wang, Jing-lan,Jiang, Yong,Shu, Gang,Jiang, Qing-yan,Wu, Zhen-fang,Xi, Qian-yun,Zhang, Yong-liang,Guan, Li-zeng,Cai, Jin-shun.

[9]SlnM gene overexpression with different promoters on natamycin production in Streptomyces lydicus A02. Wu, Huiling,Liu, Weicheng,Dong, Dan,Li, Jinjin,Zhang, Dianpeng,Lu, Caige. 2014

[10]Complexation of synthetic CDM-AM copolymer with natamycin and carbendazim to improve solubility and fungicidal activity. Li, Yong-Fu,Ji, Jing,Guo, Qin,Ha, Yi-Ming,Li, Qing-Peng,Li, Yong-Fu,Ji, Jing,Guo, Qin,Ha, Yi-Ming,Li, Qing-Peng.

[11]Potential of natamycin in enhancing the antagonistic activity of Bacillus amyloliquefaciens BGP20 against post-harvest bacterial soft rot of green pepper. Zhao, Yancun,Liu, Fengquan,Odhiambo, Benard Omondi,Qiu, Jingping.

[12]A novel highly acidic beta-mannanase from the acidophilic fungus Bispora sp MEY-1: gene cloning and overexpression in Pichia pastoris. Luo, Huiying,Wang, Yaru,Wang, Hui,Yang, Jun,Yang, Yuhui,Huang, Huoqing,Yang, Peilong,Bai, Yingguo,Shi, Pengjun,Yao, Bin,Fan, Yunliu.

[13]Cloning and characterization of a beta-1,3-glucan-binding protein from shrimp Fenneropenaeus chinensis. Lai, Xiaofang,Kong, Jie,Wang, Qingyin,Wang, Weiji,Meng, Xianhong,Lai, Xiaofang,Lai, Xiaofang.

[14]Silicon amendment to rice plants contributes to reduced feeding in a phloem-sucking insect through modulation of callose deposition. Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin,Yang, Lang,Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin,Yang, Lang,Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin. 2018

[15]Structural perspectives of an engineered beta-1,4-xylanase with enhanced enhanced thermostability. Chen, Chun-Chi,Han, Xu,Lv, Pin,Peng, Wei,Huang, Chun-Hsiang,Gao, Jian,Zheng, Yingying,Yang, Yunyun,Guo, Rey-Ting,Luo, Huiying,Wang, Kun,Yao, Bin,Ko, Tzu-Ping,Peng, Wei,Yang, Yunyun,Zhang, Jianyu.

[16]Effect of long-term administration of dietary beta-1,3-glucan on growth, physiological, and immune responses in Litopenaeus vannamei (Boone, 1931). Zhao, Hong-Xia,Wang, An-Li,Ye, Chao-Xia,Zhao, Hong-Xia,Cao, Jun-Ming,Huang, Yan-Hua,Lan, Han-Bing,Zhou, Ting-Ting,Li, Guo-Li,Du, Zhen-Yu.

[17]Synthesis and Bioactivities of Novel 1,3,4-oxadiazole Derivatives Containing Pyridine Moiety. Sun, Guo-Xiang,Sun, Zhao-Hui,Yang, Ming-Yan,Wu, Hong-Ke,Weng, Jian-Quan,Tan, Cheng-Xia,Liu, Xing-Hai,Shi, Yan-Xia,Li, Bao-Ju,Zhang, Yong-Gang. 2014

[18]Three Non-Aspartate Amino Acid Mutations in the ComA Response Regulator Receiver Motif Severely Decrease Surfactin Production, Competence Development, and Spore Formation in Bacillus sublilis. Wang Xiaoyu,Luo, Chuping,Liu, Youzhou,Nie, Yafeng,Liu, Yongfeng,Zhang, Rongsheng,Chen, Zhiyi. 2010

[19]Anti-Phytopathogenic and Cytotoxic Activities of Crude Extracts and Secondary Metabolites of Marine-Derived Fungi. Zhao, Dong-Lin,Wang, Dan,Tian, Xue-Ying,Li, Yi-Qiang,Zhang, Cheng-Sheng,Cao, Fei. 2018

[20]Evaluation of the antimicrobial activity of 9-oxo-agerophorone against soil borne pathogens. Ouyang, Canbin,Li, Yuan,Fang, Wensheng,Yan, Dongdong,Guo, Meixia,Cao, Aocheng,Wang, Qiuxia,Yang, Dongsheng.

作者其他论文 更多>>