Field measurement of ammonia emissions after nitrogen fertilization-A comparison between micrometeorological and chamber methods

文献类型: 外文期刊

第一作者: Ni, Kang

作者: Ni, Kang;Ni, Kang;Koester, Jan Reent;Ni, Kang;Seidel, Achim;Pacholski, Andreas;Pacholski, Andreas;Koester, Jan Reent

作者机构:

关键词: Ammonia volatilization;Micrometeorological method;Dynamic chamber;N fertilizer;Open path Fourier transform infrared spectroscopy;Backward Lagrangian dispersion technique

期刊名称:EUROPEAN JOURNAL OF AGRONOMY ( 影响因子:5.124; 五年影响因子:5.567 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Field application of ammonium based nitrogen (N) fertilizers can cause high ammonia (NH3) losses into the atmosphere, posing a nutrient loss and threats to the environment. Reliable NH3 flux determination is necessary for improving management practices and emission inventories. However, all deployed measurement techniques are afflicted with different inaccuracies and shortcomings. Thus, in this study different methodical approaches for field measurements of ammonia emissions were compared under varying field conditions and with different N fertilizer types. NH3 fluxes were measured in three field trials applying urea, pig slurry and anaerobic digestate. The NH3 flux was measured by 4 approaches using (a) the combination of passive flux sampler with backward Lagrangian stochastic dispersion flux model (PFSbLS), (b) passive flux sampler with flux calculation by ZINST approach (PFSZINST), (c) the open path Fourier Transform Infrared spectroscopy with backward Lagrangian stochastic dispersion flux model (FTIRbLS) and (d) a calibrated dynamic chamber method (Drager tube measurement, DTM), respectively. The emission results by PFS (with both, bLS and ZINST) and FTIR were in good agreement with mean ratio of all three trials of 1.07 (range of 0.54-2.24) and 1.12 (range of 0.87-1.59) for FTIRbLS/PFSbLS and PFSZINST/PFSbLS, respectively. In urea trial, cumulative NH3 loss determined with DTM was close to that derived from PFSbLS, with a ratio of 1.18. However, in the trials of pig slurry and anaerobic digestate, in which the organic fertilizers were incorporated into the soil, the DTM yielded much lower results than PFSbLS, with the DTM/PFSbLS of 0.56 and 0.30, respectively. This underestimation was probably due to the high heterogeneity of the fluxes at different locations of the experimental site after slurry incorporation. FTIR as well as PFS integrate over large areas, making them robust against spatial heterogeneity. The DTM, in contrast, should only be deployed with surface applied and evenly distributed fertilizers. Results from bLS and ZINST calculations based on PFS raw data were in good agreement, but application of ZINST is clearly restricted by its strict prerequisites, such as deriving empirical ratio of the horizontal flux at the ZINST height to the emission rate from the plot with specific size and surface roughness as well as requiring large uniform fields. FTIRbLs provided the highest temporal resolution and highest sensitivity at low concentrations of all methods, and is thus the best choice when these are required. (C) 2015 Elsevier BM. All rights reserved.

分类号: S3

  • 相关文献

[1]Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Cai, GX,Chen, DL,Ding, H,Pacholski, A,Fan, XH,Zhu, ZL. 2002

[2]Effects of Nitrogen Rate and Split Application Ratio on Nitrogen Use and Soil Nitrogen Balance in Cotton Fields. Li Pengcheng,Dong Helin,Dong Helin,Liu Aizhong,Liu Jingran,Sun Miao,Li Yabing,Liu Shaodong,Zhao Xinhua,Mao Shuchun. 2017

[3]Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China. Xie, Zhijian,Tu, Shuxin,Han, Dan,Li, Hailan,Muhammad, Imtiaz,Xie, Zhijian,Xu, Changxu,Chen, Jingrui,Liu, Guangrong,Xie, Zhijian,Tu, Shuxin,Shah, Farooq,Cao, Weidong.

[4]The effect of N fertilizer strategy on N-2 fixation, growth and yield of vegetable soybean. Yinbo, G,Peoples, MB,Rerkasem, B. 1997

[5]Effect of N and K fertilizers on yield and quality of greenhouse vegetable crops. Liu Zhao-Hui,Jiang Li-Hua,Zhang Wen-Jun,Zhang Yu-Lan,Zheng Dong-Feng,Li Xiao-Lin,Hardter, R.. 2008

[6]Long-Term Application of Organic Manure and Mineral Fertilizer on N2O and CO2 Emissions in a Red Soil from Cultivated Maize-Wheat Rotation in China. Zhai Li-mei,Liu Hong-bin,Zhang Ji-zong,Huang Jing,Wang Bo-ren. 2011

[7]Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium. Liu, Dahui,Liu, Wei,Zhu, Duanwei,Geng, Mingjian,Zhou, Wenbing,Yang, Tewu,Liu, Dahui.

[8]Ammonia toxicity in aerobic rice: use of soil properties to predict ammonia volatilization following urea application and the adverse effects on germination. Haden, V. R.,Hobbs, P.,Duxbury, J. M.,Xiang, J.,Peng, S.,Ketterings, Q. M..

[9]Control of Nitrogen Loss during Co-Composting of Banana Stems with Chicken Manure. Wu, Chunyuan,Li, Qinfen,Zhang, Yubai. 2011

[10]An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Wang, Hongyuan,Zhang, Yitao,Liu, Hongbin,Zhai, Limei,Zhang, Yitao,Chen, Anqiang,Lei, Baokun,Ren, Tianzhi.

[11]Gaseous losses of fertilizer nitrogen from a citrus orchard in the red soil hilly region of Southeast China. Ding, Hong,Zheng, Xiangzhou,Zhang, Yushu,Zhang, Jing,Ding, Hong,Chen, Deli.

[12]Modeling the fate of fertilizer N in paddy rice systems receiving manure and urea. Liang Xinqiang,Li, Yuan Jun,Liang, Li,Tian Guangming,He Miaomiao,Hua, Li. 2014

[13]Lysimeter study of nitrogen losses and nitrogen use efficiency of Northern Chinese wheat. Gu, Limin,Liu, Tiening,Wang, Jingfeng,Liu, Peng,Dong, Shuting,Zhang, Jiwang,Zhao, Bin,Gu, Limin,Liu, Tiening,Zhao, Bingqiang,Li, Juan,So, Hwat-Bing.

[14]Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China. Chen, Anqiang,Lei, Baokun,Hu, Wanli,Lu, Yao,Mao, Yanting,Duan, Zongyan,Chen, Anqiang,Shi, Zesheng.

[15]Nitrogen dynamics of anaerobically digested slurry used to fertilize paddy fields. Chen, Dingjiang,Huang, Hong,Jiang, Lina,Toyota, Koki,Dahlgren, Randy A.,Lu, Jun. 2013

[16]Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation. Wang, Shaohua,Xu, Shanshan,Hou, Pengfu,Xue, Lihong,Yang, Linzhang.

[17]Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil. Huang Jing,Zhang Yang-zhu,Huang Jing,Duan Ying-hua,Xu Ming-gang,Zhai Li-mei,Wang Bo-ren,Sun Nan,Huang Jing,Wang Bo-ren,Zhang Xu-bo,Gao Su-duan. 2017

[18]The fate of urea nitrogen applied to a vegetable crop rotation system. Ding, Hong,Zhang, Yushu,Hu, Xiaoxia,Zheng, Xiangzhou,Zhang, Jing,Weng, Boqi,Ding, Hong,Li, Shiqing,Ding, Hong,Chen, Deli.

作者其他论文 更多>>