The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis

文献类型: 外文期刊

第一作者: Zhu, Xiuliang

作者: Zhu, Xiuliang;Yang, Kun;Wei, Xuening;Rong, Wei;Du, Lipu;Ye, Xingguo;Qi, Lin;Zhang, Zengyan;Zhang, Qiaofeng

作者机构:

关键词: AGC kinase;differential expression;reactive oxygen species;resistance;Rhizoctonia cerealis;Triticum aestivum;wheat

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes.

分类号: Q94

  • 相关文献

[1]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[2]The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Du, Lipu,Ye, Xingguo,Liu, Xin,Zhang, Zengyan,Lu, Chungui,Coules, Anne.

[3]Ecological fitness of fludioxonil-resistant Rhizoctonia cerealis strain and its cross-resistance to DMIs and validamycin. Xia, Xiaoming,Zhao, Ming,Wang, Hongyan,Ma, Hui,Wang, Kaiyun. 2012

[4]Identification and antifungal assay of a wheat beta-1,3-glucanase. Liu, Baoye,Lu, Yan,Xin, Zhiyong,Zhang, Zengyan. 2009

[5]Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 x Xuzhou 25. Jiang, Yanjie,Zhu, Fangfang,Cai, Shibin,Wu, Jizhong,Zhang, Qiaofeng. 2016

[6]Changes in Activities of Antioxidant-Related Enzymes in Leaves of Resistant and Susceptible Wheat Inoculated with Rhizoctonia cerealis. Liu Hong-xia,Xin Zhi-yong,Zhang Zeng-yan. 2011

[7]The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot In wheat. Hamada, Mohamed Sobhy,Yin, Yanni,Ma, Zhonghua,Chen, Huaigu.

[8]Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat-powdery mildew interactions. Li, AL,Wang, ML,Zhou, RH,Kong, XY,Huo, NX,Wang, WS,Jia, JZ. 2005

[9]The effect of low water content on seed longevity. Hu, CL,Zhang, YL,Tao, M,Hu, XR,Jiang, CY. 1998

[10]Mapping of a wheat resistance gene to yellow mosaic disease by amplified fragment length polymorphism and simple sequence repeat markers. Nie, H,He, ZT,Chen, XL,Han, YP,Wang, JR,Li, X,Han, CG,Yu, JL. 2005

[11]Development of salinity-tolerant wheat recombinant lines from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. Wang, RRC,Li, XM,Hu, ZM,Zhang, JY,Larson, SR,Zhang, XY,Grieve, CM,Shannon, MC. 2003

[12]Microsatellite marker identification of a Triticum aestivum Aegilops umbellulata substitution line with powdery mildew resistance. Zhu, Zhendong,Zhou, Ronghua,Kong, Xiuying,Kong, Xiuying,Dong, Yuchen,Jia, Jizeng. 2006

[13]Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Kong, XY,Gu, YQ,You, FM,Dubcovsky, J,Anderson, OD.

[14]Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles. He, Zhonghu,Ma, Dongyun,Morris, Craig F..

[15]Characterisation of high- and low-molecular-weight glutenin subunit genes in Chinese winter wheat cultivars and advanced lines using allele-specific markers and SDS-PAGE. Yang, F. P.,Wang, L. H.,Wang, J. W.,He, X. Y.,Xia, X. C.,He, Z. H.,Yang, F. P.,Yang, W. X.,Wang, J. W.,Zhang, X. K.,Shang, X. W.,He, Z. H..

[16]Functional markers in wheat: current status and future prospects. Liu, Yanan,He, Zhonghu,Xia, Xianchun,He, Zhonghu,Appels, Rudi.

[17]Response of wheat germplasm to infestation of english grain aphid (Hemiptera: Aphididae). Li, Fengqi,Chen, Liang,Peng, Junhua,Li, Fengqi,Kong, Lingrang,Liu, Yusheng,Wang, Hezhou,Peng, Junhua.

[18]Genetic diversity among a founder parent and widely grown wheat cultivars derived from the same origin based on morphological traits and microsatellite markers. Li, X. J.,Xu, X.,Yang, X. M.,Li, X. Q.,Liu, W. H.,Gao, A. N.,Li, L. H.,Li, X. J.,Xu, X..

[19]The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease. Wei, Xuening,Shen, Fangdi,Hong, Yantao,Rong, Wei,Du, Lipu,Liu, Xin,Xu, Huijun,Ma, Lingjian,Zhang, Zengyan,Shen, Fangdi,Ma, Lingjian.

[20]Stand establishment, root development and yield of winter wheat as affected by tillage and straw mulch in the water deficit hilly region of southwestern China. Tang Yong-lu,Wu Xiao-li,Wu Chun,Huang Gang,Li Jin-gang,Zeng Hui. 2016

作者其他论文 更多>>