Identification of salt tolerance-improving quantitative trait loci alleles from a salt-susceptible rice breeding line by introgression breeding

文献类型: 外文期刊

第一作者: Qiu, Xianjin

作者: Qiu, Xianjin;Yuan, Zhihua;Liu, Huan;Yang, Longwei;He, Wenjing;Du, Bin;Xing, Danying;Xiang, Xiaojiao;Xu, Jianlong;Ye, Guoyou;Xu, Jianlong

作者机构:

关键词: rice;introgression line;salinity tolerance;quantitative trait loci;genetic background

期刊名称:PLANT BREEDING ( 影响因子:1.832; 五年影响因子:1.956 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: To improve salt tolerance of two elite rice varieties, Ce258 and Zhongguangxiang1 (ZGX1), two sets of introgression lines (ILs) each comprising 200 BC1F10 lines derived from a common donor, IR75862, and two recipient parents, Ce258 and ZGX1, were used for mapping of QTLs for four salt tolerance-related traits at the seedling stage. Although the three parents were susceptible to salt, the two IL populations showed transgressive segregations for salt tolerance with 12 and 8 salt tolerance ILs in the Ce258-ILs and ZGX1-ILs. Eighteen main-effect QTLs were identified for the four traits in the two IL populations, and the IR75862 alleles at most loci showed increased and decreased salt tolerance in the ZGX1 and Ce258 backgrounds, suggesting overwhelming genetic background effects on QTL detection for salt tolerance. The qDSS11 simultaneously detected in the two backgrounds was validated in a F-2 population derived from a salt tolerance line and ZGX1. Our results indicated that salt tolerance-enhancing allele could be identified in the elite susceptible breeding lines and that introgression of the favourable alleles could facilitate the development of superior lines with greater salt tolerance levels.

分类号: S3

  • 相关文献

[1]Identification of QTLs for Yield-Related Traits using Two Sets of Introgression Lines with a Common Donor Parent in Rice. Zhang, Jian,Ou, Xiaoxue,Hu, Hui,Du, Bin,Lv, Wenkai,Yang, Longwei,Xing, Danying,Qiu, Xianjin,Xu, Junying,Li, Zhixin,Zhang, Yunbo,Wang, Xiaoyan,Xu, Jianlong,Xu, Jianlong,Zheng, Tianqing,Qiu, Xianjin. 2018

[2]Detecting major QTL associated with resistance to bacterial blight using a set of rice reciprocal introgression lines with high density SNP markers. Zhang, Fan,Xu, Meirong,Wang, Wensheng,Xu, Jianlong,Zhou, Yongli,Li, Zhikang,Xie, Xuewen,Li, Zhikang,Xu, Jianlong,Zhou, Yongli.

[3]Scanning QTLs for Grain Shape using Two Sets of Introgression Lines in Rice. Qiu, Xianjin,Du, Bin,Hu, Hui,Ou, Xiaoxue,Lv, Wenkai,Yang, Longwei,Xing, Danying,Xu, Junying,Li, Zhixin,Zhang, Yunbo,Wang, Xiaoyan,Xu, Jianlong,Xu, Jianlong,Zheng, Tianqing,Qiu, Xianjin. 2017

[4]Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. Huang, Liyu,Zhang, Fan,Zhang, Fan,Wang, Wensheng,Zhou, Yongli,Fu, Binying,Li, Zhikang,Zhang, Fan. 2014

[5]Genetic Dissection of Low Phosphorus Tolerance Related Traits Using Selected Introgression Lines in Rice. Xiang Chao,Ren Jie,Zhao Xiu-qin,Ding Zai-song,Zhang Jing,Wang Chao,Zhang Jun-wei,Joseph, Charles Augustino,Zhang Qiang,Pang Yun-long,Gao Yong-ming,Ren Jie,Zhang Jing,Wang Chao,Zhang Jun-wei,Shi Ying-yao,Ren Jie. 2015

[6]Genome-wide gene expression profiling of introgressed indica rice alleles associated with seedling cold tolerance improvement in a japonica rice background. Zhang, Fan,Huang, Liyu,Wang, Wensheng,Zhao, Xiuqin,Zhu, Linghua,Fu, Binying,Li, Zhikang,Zhang, Fan,Huang, Liyu,Wang, Wensheng,Zhao, Xiuqin,Zhu, Linghua,Fu, Binying,Li, Zhikang,Li, Zhikang. 2012

[7]Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice. Cheng, Lirui,Wang, Yun,Meng, Lijun,Hu, Xia,Cui, Yanru,Sun, Yong,Zhu, Linghua,Xu, Jianlong,Li, Zhikang,Wang, Yun,Ali, Jauhar,Li, Zhikang.

[8]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[9]Dissection of heterosis for yield and related traits using populations derived from introgression lines in rice. Xiang, Chao,Zhang, Hongjun,Wei, Shaobo,Fu, Binying,Gao, Yongming,Wang, Hui,Xia, Jiafa,Li, Zefu,Ye, Guoyou. 2016

[10]Quantitative trait loci for grain-quality traits across a rice F-2 population and backcross inbred lines. Lu, Bingyue,Yang, Chunyan,Xie, Kun,Zhang, Long,Wu, Tao,Li, Linfang,Liu, Xi,Jiang, Ling,Wan, Jianmin,Lu, Bingyue,Wan, Jianmin. 2013

[11]Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map. Wang, Kai,Cui, Kehui,Liu, Guoling,Xie, Weibo,Yu, Huihui,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Wang, Kai,Cui, Kehui,Liu, Guoling,Pan, Junfeng,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Pan, Junfeng,Shah, Farooq. 2014

[12]Quantitative trait loci mapping of resistance to Laodelphax striatellus (Homoptera : Delphacidae) in rice using recombinant inbred lines. Duan, Can-Xong,Wan, Jian-Min,Zhai, Hu-Qu,Chen, Qing,Wang, Jian-Kang,Su, Ning,Lei, Cai-Lin.

[13]Identification of Quantitative Trait Loci for Bacterial Blight Resistance Derived from Oryza meyeriana and Agronomic Traits in Recombinant Inbred Lines of Oryza sativa. Chen, Li-Na,Yang, Yong,Yan, Cheng-Qi,Wang, Ming,Yu, Chu-Lang,Zhou, Jie,Cheng, Ye,Cheng, Xiao-Yue,Chen, Jian-Ping,Chen, Li-Na,Zhang, Wei-Lin,Cheng, Xiao-Yue. 2012

[14]QTLs for rice flag leaf traits in doubled haploid populations in different environments. Cai, J.,Zhang, M.,Guo, L. B.,Li, X. M.,Ma, L. Y.,Bao, J. S.. 2015

[15]Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Jiang, Wenzhu,Pan, Hong-Yu,Du, Xinglin,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Han, Longzhi,Shin, Jin-Chul,Jin, Rong-De,Cao, Tiehua. 2011

[16]Identification and fine mapping of qPH6, a novel major quantitative trait locus for plant height in rice. Yuan, Yuan,Miao, Jun,Tao, Yajun,Du, Peina,Wang, Zhongde,Chen, Da,Gong, Zhiyun,Yi, Chuandeng,Dong, Guichun,Gu, Minghong,Zhou, Yong,Liang, Guohua,Ji, Chaoqiu,Wang, Jun,Zhu, Jinyan.

[17]Quantitative Trait Loci for Panicle Layer Uniformity Identified in Doubled Haploid Lines of Rice in Two Environments. Ma, Liangyong,Guo, Longbiao,Zeng, Dali,Li, Ximing,Ji, Zhijuan,Yang, Changdeng,Qian, Qian,Ma, Liangyong,Bao, Jinsong,Xia, Yingwu,Ma, Liangyong,Bao, Jinsong,Xia, Yingwu. 2009

[18]Mapping of quantitative trait loci controlling physico-chemical properties of rice grains (Oryza sativa L.). Li, ZF,Wan, JM,Xia, JF,Yano, M.

[19]Natural Variations in SLG7 Regulate Grain Shape in Rice. Miao, Jun,Peng, Xiurong,Leburu, Mamotshewa,Yuan, Fuhai,Gu, Houwen,Gao, Yun,Tao, Yajun,Gong, Zhiyun,Yi, Chuandeng,Gu, Minghong,Yang, Zefeng,Liang, Guohua,Gu, Haiyong,Zhu, Jinyan.

[20]Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Zhu, Wenyin,Lin, Jing,Yang, Dewei,Zhao, Ling,Zhang, Yadong,Zhu, Zhen,Chen, Tao,Wang, Cailin.

作者其他论文 更多>>